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where a and b are twomultivariate observations, Σ− is the
inverse of the variance-covariance matrix and (a − b)′ is
the transpose of vector (a − b).

�e Mahalanobis distance is designed to take into
account the correlation between all variables (attributes)
of the observations under consideration. For uncorre-
lated variables, the Mahalanobis distance reduces to the
Euclidean distance for standardized data.
As an example, consider a set of points x inR that have

the constant distance r from the origin, that is, (, ).�en,
the set of points having the property dMahalanobis(, x) = r
is an ellipse.�eMahalanobis distance is a positive de�nite
quadratic form x′Ax, where the matrix A = Σ−.
Distance measures or metrics are members of a

broader concept called similarity measures (or dissimi-
larity measures) (�eodoridis and Koutroumbas )
that measure likeness (or a�nity) in the case of the
similarity measure, or di�erence (or lack of a�nity)
in the case of dissimilarity between objects. Similar-
ity measures can be converted to dissimilarity measures
using a monotone decreasing transformation and vice
versa.

�emain di�erence betweenmetrics and broader con-
cepts of similarity/dissimilarity measures is that some of
the properties ()–() do not hold for similarity/dissimi-
larity measures. For example, de�niteness, or the triangle
inequality, usually do not hold for similarity/dissimilarity
measures.

�e cosine similarity and the Pearson’s product
moment coe�cient are two similarity measures that are
not metric.�e cosine similarity is the cosine of an angle
between the vectors x and y from Rn and is given by:

s(x, y) = x′y
∥x∥∥y∥

,

where ∥x∥ and ∥y∥ are norms of the vectors x and y.�is
measure is very popular in information retrieval and text-
mining applications.
In statistical analysis (especially when applied to ecol-

ogy, natural language processing, social sciences, etc.)
there are o�en cases in which similarity or the distance
between two items (e.g., sets, binary vectors) is based on
two-way contingency tables with elements a, b, c, and d,
where a represents the number of elements (attribute val-
ues, variables values) present in both items, b is the number
of elements present in the �rst but absent in the sec-
ond item, c is the number of elements present in the second
but absent in the �rst item, and d is number of elements
absent simultaneously in both items.�e numbers a, b, c,
and d can be de�ned as properties of two sets or two binary
vectors.

Similarity coe�cients (�eodoridis and Koutroumbas
) or associations measures can be de�ned as a combi-
nation of numbers a, b, c, and d. Examples of associations
measures are:

Simple matching coe�cient (a + d)/n,
Dice coe�cient a/(a + b + c),
Jaccard (or Tanimoto) coe�cient a/(a + b + c).

Although association measures, similarity measures, and
correlation coe�cients are not metric, they are applicable
in the analysis where they are consistent with the objective
of the study and where they have meaningful interpreta-
tion (Sharma ).
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Distance sampling is a widely used methodology for
estimating animal density or abundance. Its name derives
from the fact that the information used for inference are
the recorded distances to objects of interest, usually ani-
mals, obtained by surveying lines or points.�e methods
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are also particularly suited to plants or immotile objects, as
the assumptions involved (see below for details) are more
easily met. In the case of lines the perpendicular distances
to detected animals are recorded,while in the case of points
the radial distances from the point to detected animals
are recorded. A key underlying concept is the detection
function, usually denoted g(y) (here y represents either a
perpendicular distance from the line or a radial distance
from the point).�is represents the probability of detect-
ing an animal of interest, given that it is at a distance y from
the transect. �is function is closely related to the prob-
ability density function (pdf) of the detected distances,
f (y), as

f (y) = g(y)π(y)
∫
w

 g(y)π(y)dy
, ()

where π(y) is the distribution of distances available for
detection and w is a truncation distance, beyond which
distances are not considered in the analysis. �e above
pdf provides the basis of a likelihood from which the
parameters of the detection function can be estimated. An
important and o�en overlooked consideration is that π(y)
is assumed known.�is is enforced by design, as the ran-
dom placement of transects, independently of the animal
population, leads to a distribution which is uniform in the
case of line transects and triangular in the case of point
transects (Buckland et al. ).
Given the n distances to detected animals, density can

be estimated by

D̂ = nf̂ ()
L

()

in the case of line transects with total transect length L,
where f () is the estimated pdf evaluated at zero distance,
and by

D̂ = nĥ()
kπ

()

in the case of k point transects, where h() is the slope
of the estimated pdf evaluated at zero distance (Buckland
et al. ).�is is a useful result because we can then use
all the statistical tools that are available to estimate a pdf
in order to obtain density estimates. So one can consider
plausible candidate models for the detection function and
then use standardmaximum likelihood to obtain estimates
for the corresponding parameters and therefore density
estimates.

�e most common so�ware to analyze distance sam-
pling data, Distance (�omas et al. ), uses the
semi-parametric key+series adjustment formulation from
Buckland (), in which a number of parametric mod-
els are considered as a �rst approximation and then some
expansion series terms are added to improve the �t to the

data. Standard model selection tools and goodness-of-�t
tests are available for assisting in 7model selection.
Variance estimates can be obtained using a delta

method approximation to combine the individual vari-
ances of the random components in the formulas above
(i.e., n and either f () or h(); for details on obtaining each
component variance, see Buckland et al. ). In some
of the more complex scenarios, one must use resampling
methods based on the non-parametric bootstrap, which
are also available in the so�ware.
Given a su�ciently large number of transects ran-

domly allocated independently of the population of inter-
est, estimators are asymptotically unbiased if () all animals
on the transect are detected, i.e., g() = , () sam-
pling is an instantaneous process (typically it is enough if
animal movement is slow relative to the observer move-
ment), and () distances are measured without error. See
Buckland et al. () for discussion of assumptions. Other
assumptions, for example that all detections are indepen-
dent events, are strictly required as the methods are based
on maximum likelihood, but the methods are extraor-
dinarily robust to their failure (Buckland ). Failure
of the g() =  assumption leads to underestimation
of density. Violation of the movement and measurement
error assumption have similar consequences. Underesti-
mation of distances and undetected responsive movement
toward the observers lead to overestimation of density,
and overestimation of distances and undetectedmovement
away from the observer lead to underestimation of density.
Random movement and random measurement error usu-
ally leads to overestimation of density. Naturally the bias
depends on the extent to which the assumptions are vio-
lated. Most of the current research in the �eld is aimed
at relaxing or avoiding the need for such assumptions.
As there are no free lunches in statistics, these come at
the expense of more elaborate methods, additional data
demands and additional assumptions.
Further details about conventional distance sampling,

including dealing with clustered populations, cue counting
methods and �eld methods aspects, can be found in
Buckland et al. (), while advanced methods, includ-
ing the use ofmultiple covariates in the detection function,
double platform methods for when g() < , spatial mod-
els, automated survey design, and many other specialized
topics, are covered in Buckland et al. ().
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�e distributions of order k are in�nite families of proba-
bility distributions indexed by a positive integer k, which
reduce to the respective classical probability distributions
for k = , and they have many applications. We presently
discuss brie�y the geometric, negative binomial, Poisson,
logarithmic series and binomial distributions of order k.

Geometric Distribution of Order k
Denote by Tk the number of independent Bernoulli tri-
als with success (S) and failure (F) probabilities p and
q =  − p ( < p < ), respectively, until the occurrence of
the kth consecutive success. Philippou and Muwa� ()

observed that a typical element of the event {Tk = x} is an
arrangement

aa . . . ax+x+⋅⋅⋅+xk SS . . . S´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
k

, ()

such that x of the a’s are E = F, x of the a’s are
E = SF, . . . , xk of the a’s are Ek = SS . . . S´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

k−

F, and proceeded

to obtain the following exact formula for the probability
mass function (pmf) of Tk, namely,

f (x) = P(Tk = x)

= px∑(x + x + ⋅ ⋅ ⋅ + xk
x, x, . . . , xk

)(q
p
)
x+x+⋅⋅⋅+xk

, x ≥ k,

()

where the summation is taken over all non-negative inte-
gers x, x, . . . , xk satisfying the condition x + x + ⋅ ⋅ ⋅ +
kxk = x − k. Alternative simpler formulas have been
derived. �e following recurrence for example, due to
Philippou and Makri (), is very e�cient for compu-
tations

f (x) = f (x − ) − qpkf (x −  − k), x > k ()

with initial conditions f (k) = pk and f (x) = qpk for k < x ≤
k. Furthermore, it shows that f (x) attains its maximum
pk for x = k, followed by a plateau of height qpk for x =
k + , k + , . . . , k, and decreases monotonically to  for
x ≥ k + .
Philippou et al. () employed the transformation

xi = mi ( ≤ mi ≤ k) and x = m +∑ki=(i − )mi to show
that∑∞x=k f (x) =  (and hence f (x) is a proper pmf).�ey
named the distribution ofTk geometric distribution of order
k with parameter p and denoted it by Gk(p), since for k = 
it reduces to the classical geometric distribution with pmf
f (x) = qx−p (x ≥ ). It follows from (), by means of the
above transformation and the multinomial theorem, that
the probability generating function (pgf) of Tk is given by

ϕk(w) =
∞
∑
x=k
x
w
f (x) = pkwk( − pw)

 − w + qpkwk+
, ∣ w ∣≤ . ()

�e mean and variance of Tk readily follow from its pgf
and they are given by

E(Tk) =
 − pk

qpk
, Var(Tk) =

 − (k + )qpk − pk+

(qpk)
.

()
A di�erent derivation of () was �rst given by Feller (),
who used the method of partial fractions on ϕk(w) to


