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Summary 
The requirement to model within-year grey seal 
movement between breeding colonies in a 
biologically realistic and computationally 
manageable way has led to the development of 
the framework presented here. We attain 
biological realism by modelling behavioural 
attributes of the animals (such as site-fidelity and 
philopatry) and computational expediency by 
solving the model at equilibrium, hence, directly 
obtaining a yearly, redistribution function. We 
present preliminary results on the long-term 
population consequences of this model. 
 
Introduction 
The use of mathematical models to manage risk 
for any ecological system presents us with two, 
equally important, requirements. First, we need a 
functionally realistic and parametrically flexible 
mathematical model whose deterministic and 
stochastic properties are well understood. Second, 
we need efficient methods for fitting the model to 
data and quantifying the uncertainty in its 
predictions.  
 Model-fitting is often a computationally 
intensive process, performed on a fin ite amount of 
data. This imposes the additional requirement for 
a model that is no more complex and parameter-
rich than the limitations in computer speed and 
the availability of data will allow. This trade-off 
becomes particularly important when modelling 
the population dynamics of large, marine 
mammals. This is because the animals’ complex 
behaviour prevents us from attaining realism with 
simple population models and because their long 
life-span and large-scale movements in an 
environment that is principally opaque to human 
observation limit the amount of data available. 
 In grey seals, movement of females between 
colonies affects the spatial distribution of 
“hotspots” of pup production hence increasing the 
need for a spatially explicit population model. 
Also patterns of colonization and extinction of 

local breeding populations may affect the rate of 
growth of the grey seal population as a whole.  
 There is general consensus that we need to be 
able to tease apart the effects of movement and 
demography on local population dynamics.  
However, it is also clear that a spatially explicit 
model of movement, nested within a model of 
population dynamics, may present us with a 
bottleneck in running speed that makes model-
fitting and uncertainty estimation prohibitive. 
 The objective of this work is to satisfy both 
the requirements of speed and realism in a model 
of within-year movement and to investigate the 
behaviour of such a model in a population 
dynamical context. This work is still in its early 
stages (initiated July 2003) and no part of it is 
published so we indulge in slightly more detail 
than in other Briefing papers. 
 
Model of movement 
To achieve our target of high running speed we 
aimed to obtain a redistribution function as the 
steady state solution of a system of ordinary 
differential equations modelling within-year 
movement in a network of breeding colonies. If 
we assume that no mortality occurs during 
migration and focus on the period just before the 
breeding season then steady state will be achieved 
when the net rate of movement between colonies 
is zero. This involves the rather strict assumption 
that seals have enough time to reach an 
equilibrium distribution and enough knowledge 
about the network of colonies to allow them to 
make their choice. The legitimacy of this 
assumption in grey seals stems from the fact that 
the animals take approximately five years to 
mature reproductively and during this time they 
travel extensively for foraging, and aggregate 
annually around breeding colonies even before 
they breed themselves.  
 There are three aspects of grey seal behaviour 
that need to be taken into account: 
1. Site fidelity: Females that have given birth in 
previous years display strong site-fidelity towards 
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the site where they first gave birth. In future 
versions of this framework, we can model this as 
a variable proportion of veteran mothers, related 
to external factors such as human disturbance. 
However, in this version, we assume that 
choosing a breeding colony is a life-long decision. 
2. Philopatry: A newly matured seal’s choice of 
breeding colony is strongly biased towards its 
natal site. The animals that stay put, as a 
proportion of each local population, determine the 
initial conditions for our model. However, each 
year, crowding can force females out of their 
natal site leading to a variable proportion of 
migrants. Our model operates on this pool of 
mobile animals. Importantly, this allows us to 
ignore the animals’ natal site after the movement 
starts (this is not an individual-based simulation 
and such tracking would be cumbersome).  
3. Flux of migrants through the colonies: The flux 
of animals through each colony will depend on 
the topology of the network of colonies and the 
probability that an animal will jump from one 
colony to another as a function of the distance 
between them. 
4. Decision to settle at a colony: This decision is 
ultimately density-dependent. This can be seen as 
a trade-off between the benefits of being among 
conspecifics and the drawbacks of having to 
contend with too many of them. There may 
therefore exist an optimal density at which the 
probability of settling is maximized. 
 
Model description  
Let M be the total population size in a particular 
year. Let )(tM i  be the total number of animals in 

colony i. This will consist of iN , the number of 
animals that decided to stay attached to their natal 
colony and )(tPi , the number of mobile animals 
currently in the ith colony. We outline the 
structure of a functionally unspecified initial 
value problem and introduce some further 
notation. The model can be stated in terms of the 
state variable )(tPi  and the initial conditions in 

terms of )0(iM  and iN . 
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We define the following (per-capita) functions: 
 
Function Interpretation 

))0(( iMf  Probability of leaving natal site 

)( ijdh  Probability of moving from colony 
i to colony j as a function of their 
distance ijd  

))(( tMg i  Probability of leaving current 
colony 

 
The model is written 
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Note that animals are allowed to revisit colonies 
at which they have been before (including their 
natal site).  
 
Equilibrium solutions 
We seek the equilibrium solutions }{ *

iP  of the 
system (2) under the constraint  
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This constraint (conservation of total female 
numbers) prevents the system from reaching its 
natural steady state and therefore, system (2) is 
not sufficient to give us the final outcome in this 
model. However, it can be used as follows. First, 
write all but one of the equations at equilibrium 
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where 11 −≤≤ mi . Define the new variable  
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This has m variables and m-1 equations. It can be 
solved to give m-1 expressions of the type 

 

mii xHx =                          (7) 
 
where iH  is a colony “connectivity” parameter 

made up of the individual parameters ijh . Now, 

assuming that (5) can be solved for *
iP  we have 

the following 2m equations in 2m unknowns 
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This approach, entirely rests on being able to 
inverse-solve (5) i.e. find the function )( ixq . If it 
is possible, the problem is reduced to finding the 
solution of 
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Note that this is a single algebraic equation in mx . 
 
Example 1: Monotonic density dependence in the 
departure rate The probability of leaving a 
colony increases monotonically with density 
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The variable ix  is written 

 

)(
)(

*

**

iii

iii
i PN

PPN
x

++
+

=
β

                   (11) 

 
This has only one positive solution 
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The problem now becomes finding a solution for 
the single algebraic equation 
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There is no closed-form solution, but a numerical 
solution is almost instantaneous. 
 
Example 2: Allee effect in departure rate A 
possible formulation for the function )( iPg  is  

 

))((
)(

1)(
iiii

ii
i PNPN

PN
Pg

++++
+

−=
βα

α
     (14) 

 
This expresses the trade-off as a product of two 
models. The model )()( iiii PNPN +++ β  
describes the increase in the probability of settling 
as a result of the need to be near conspecifics. The 
model )( ii PN ++αα  expresses the decrease in 
probability as a result of the detrimental effects of 
density on pup survival. The variable ix  is 
written 
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This is a cubic with only one real solution. It is 
too long-winded to write here so, call it 

)(*
ii xP .The problem now becomes finding a 

solution for the single algebraic equation 
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Once again, numerical methods can be used to 
solve this single algebraic equation. For example, 
using Newton’s method, a solution of (16) takes 
marginally more time than a solution of (13). 
 
Long-term population consequences 
One of the main debates concerning grey seal 
population dynamics is on the relative 
contribution of local and global population 
regulation. Local regulation could come about 
through the effects of colony crowding on pup 
survival. Global regulation could arise from some 
resource limitation on the population as a whole. 
This could manifest as adult and sub-adult 
mortality or reduced fecundity. The principal 
argument against local population regulation is 
that, given the number of empty and potentially 
suitable breeding sites, there is no obvious reason 
why existing colonies should be crowded. The 
principal argument against global population 
regulation is that, although some colonies seem to 
be reaching a plateau, others are still increasing 
exponentially.  
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 In order to quantify the strength and 
consequences of some of these arguments, we 
placed our movement model in a suitable 
demographic model (see Briefing paper by 
Thomas and Harwood) containing only 
demographic stochasticity and examined the long-
term dynamics and occupancy patterns arising in 
a system of 20 colonies. 
 In each simulation, we begun by seeding one 
colony with the same number of adult individuals 
and recorded the dynamics for 500 years. The 
exploration of the parameter space was not 
systematic, we just report here on the results of 
four selected experiments: 
 
1. Local population regulation, tracked by 
philopatry.  
For this experiment, we assumed that density at 
the breeding colonies regulates pup survival 
according to a Beverton-Holt function. We also 
assumed that females abandon their natal colony 
with a probability that tracks pup mortality. In 
other words, there is local population regulation 
but mothers are efficient in overcoming their 
philopatry for the sake of their pups.  
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                    (a)                                      (b) 
Figure 1: Typical simulation output after 500 years. a) Final 
distribution of animals in space, the size of the circles is 
proportional to the number of animals associated with each 
breeding colony. b) The time series of total population size. 
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Figure 2: Proportion of occupied colonies shown against time. 
The central curve shows mean occupancy from 50 realisations 
of the process. The accompanying curves represent 98.1±  
standard deviations from the mean. 
 
In all realizations of this process we observed 
logistic population growth (Fig. 1) and, spatially, 

a smooth process of colonization culminating in 
all colonies being occupied by the end of the 500 
years (Fig. 2). 
 
2. Local population regulation, stepwise response 
of philopatry 
In this case, we assumed that the decis ion of 
females to leave their natal site is taken on the 
basis of a rule of thumb on density rather than 
incrementally, as a function of pup survival. In 
practice, we did this by using a generalized 
Beverton-Holt function to model the decision of 
mothers to leave (Fig. 3).  
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Figure 3: Pup survival probability (thick grey curve) and 
probability of leaving natal site (thin black curve) used for the 
simulations. 
 
This led to markedly different results. Until 
density reached a critical value, very few females 
moved away from their natal site, hence imposing 
high mortality on their pups. This led to the entire 
population being “trapped”, for long time 
intervals, within only a subset of the available 
breeding colonies (Fig. 4a). Overall, population 
growth was punctuated (Fig. 4b) as, for long 
periods of time, the population reached an 
apparent equilibrium until demographic 
stochasticity caused some females to colonise a 
new site and, hence, encourage further population 
growth. 
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                    (a)                                      (b) 
Figure 4: Typical simulation output after 500 years. a) Final 
distribution of animals in space, the size of the circles is 
proportional to the number of animals associated with each 
breeding colony. b) The time series of total population size. 
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The pattern of occupancy over 50 realisations of 
the process (Fig. 5) was also markedly different 
from that of Fig. 2. Specifically, modeling 
philopatry in this way not only decreased the rate 
of colonization (seen as the mean proportion of 
occupied colonies in Fig. 5), but also increased 
the variability around it as colonization events 
depended less on deterministic growth rates and 
more on demographic stochasticity. 
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Figure 5: Proportion of occupied colonies shown against time. 
The central curve shows mean occupancy from 50 realisations 
of the process. The accompanying curves represent 98.1±  
standard deviations from the mean. 
 
3. Global population regulation 
We implemented global population regulation by 
making adult and juvenile survival a decreasing 
function of total density. The assumed proximate 
cause was global resource limitation. Again, we 
used a simple Beverton-Holt function for this. 
Philopatry was modeled as a simple Beverton-
Holt function of local density. 
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                    (a)                                      (b) 
Figure 6: Typical simulation output after 500 years. a) Final 
distribution of animals in space, the size of the circles is 
proportional to the num ber of animals associated with each 
breeding colony. b) The time series of total population size. 
 
Simulations of this system gave us logistic growth 
in total population numbers, with the animals 
being homogeneously distributed between 
suitable breeding sites (Fig. 6). All the breeding 
sites were colonised within approximately 30 
years and the system maintained full occupancy 
from then until the end of the 500 years with no 
exception between different realizations of the 
process (Fig. 7). 
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Figure 7: Proportion of occupied colonies shown against time. 
The central curve shows mean occupancy from 50 realisations 
of the process. The accompanying curves represent 98.1±  
standard deviations from the mean. 
 
 
4. Global population regulation, stepwise 
philopatry. 
For this example we used exactly the same 
simulation setup as in the previous example, but 
replaced the philopatry model with the step-wise 
function of Fig. 3. This, makes the females’ 
decision to leave their natal site, initially, 
unresponsive to increases in local density. As 
might be expected, total population numbers 
followed a similar trajectory (Fig. 8b) to that 
observed in the previous example (Fig. 6b). 
However, the distribution of animals was more 
heterogeneous (Fig. 8a, compare with Fig. 6a). 
This clustering was a direct result of tradition at 
the population level arising from philopatry and 
site-fidelity at the level of the individual. 
 

1

2

3

4

5

6
7

8

9

10

11

12
13

14

15

16 17

18

19

20

100 200 300 400 500

500

1000

1500

2000

 
                    (a)                                      (b) 
Figure 8: Typical simulation output after 500 years. a) Final 
distribution of animals in space, the size of the circles is 
proportional to the number of animals associated with each 
breeding colony. b) The time series of total population size. 
 
The occupancy graph (Fig. 9) can illustrate this 
process more clearly. Initially (within the first 30 
years or so), all sites become colonised. However, 
through random demographic events, some 
colonies manage to grow and hence, indirectly, 
inflict higher mortality on other colonies. This, 
therefore, is an example of competition between 
colonies for limited resources.  



SCOS Briefing Paper 03/12 

 - 6 - 

O
cc

up
an

cy
 

100 200 300 400 500

0.2

0.4

0.6

0.8

1

  Time 
Figure 9: Proportion of occupied colonies shown against time. 
The central curve shows mean occupancy from 50 realisations 
of the process. The accompanying curves represent 98.1±  
standard deviations from the mean. 
 
 
Discussion 
We outlined a biologically plausible model of 
movement between breeding colonies for grey 
seals and the technique used for deriving a 
redistribution function on the basis of a within-
year equilibrium assumption. 
 The computational gain in speed has allowed 
us to place the movement model inside an age-
structured population model and investigate 
verbal hypotheses about population regulation in 
grey seals. 
 We focused on the dichotomy between global 
and local population regulation and demonstrated 
that, depending on the nature of the decision-
making of philopatric females, it is possible to 
generate markedly different types of population 
dynamics and patterns of colonization.  
 Ironically, our preliminary results suggest that 
the principal arguments against both local and 
global population regulation are not necessarily 
valid. Hence, our first example suggests that if the 
population is regulated locally, all breeding sites 
may be colonised. In contrast, our second 
example shows that this is only true in the long-
run as the population may, temporarily, be 
trapped in a subset of the available breeding sites. 
Similarly, our third example suggests that global 
population regulation can lead to local dynamics 
that mirror global dynamics, but our fourth 
example shows that clustering can produce 
intermittent occupancy (extinction/colonization 
events).  
 The main question now is which of these 
examples best approximates the truth. This can, 
perhaps, be resolved by fitting this version of the 
model to spatially disaggregated data. Whatever 
the answer, these examples have demonstrated 
how movement behaviour can affect local and 
global population dynamics and hence reinforced 
the case for continuing to develop spatially 
explicit models of the grey seal population. 

 Admittedly, spatially explicit models increase 
the demand for data. We hope that disaggregating 
already existing data sets down to the colony level 
may be able to satisfy at least part of these 
requirements. 
 One final comment in support of this approach 
is the additional predictive power that it provides 
us with. Understanding the animals’ behaviour 
and its population implications can prevent us 
from misreading our data. A good example is 
provided by Fig. 4b. Misinterpreting any one of 
the multiple plateaus in the population time series 
as the environment’s carrying capacity and 
developing a management strategy on that basis 
would completely miss the potential of an 
imminent period of further exponential growth. 


