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Summary. We compare two Monte Carlo (MC) procedures, sequential importance sampling (SIS) and Markov chain Monte
Carlo (MCMC), for making Bayesian inferences about the unknown states and parameters of state–space models for animal
populations. The procedures were applied to both simulated and real pup count data for the British grey seal metapopulation,
as well as to simulated data for a Chinook salmon population. The MCMC implementation was based on tailor-made proposal
distributions combined with analytical integration of some of the states and parameters. SIS was implemented in a more
generic fashion. For the same computing time MCMC tended to yield posterior distributions with less MC variation across
different runs of the algorithm than the SIS implementation with the exception in the seal model of some states and one
of the parameters that mixed quite slowly. The efficiency of the SIS sampler greatly increased by analytically integrating
out unknown parameters in the observation model. We consider that a careful implementation of MCMC for cases where
data are informative relative to the priors sets the gold standard, but that SIS samplers are a viable alternative that can
be programmed more quickly. Our SIS implementation is particularly competitive in situations where the data are relatively
uninformative; in other cases, SIS may require substantially more computer power than an efficient implementation of MCMC
to achieve the same level of MC error.
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1. Introduction
State–space models (SSMs) have been proposed as a unify-
ing framework for modeling animal population dynamics and
corresponding observations made on the population (Schnute,
1994; Buckland et al., 2004; Thomas et al., 2005). However,
realistic SSMs for animal populations are often complex, non-
linear, and non-Gaussian and can be difficult to fit to real
data. Fitting procedures are simulation based and often re-
quire writing software specific to the problem at hand (e.g.,
Trenkel, Elston, and Buckland, 2000; Schnute and Kronlund,
2002; Wikle, 2003; Clark and Bjørnstad, 2004; Ionides, Breto,
and King, 2006). For SSMs for animal populations to gain
wider usage, general purpose software for fitting a variety of
SSMs is needed. Our primary aim was to determine whether
Markov chain Monte Carlo (MCMC; Gilks, Richardson, and
Spiegelhalter, 1996) or sequential importance sampling (SIS;
Liu, 2001) would be a more promising inference engine for
such software. In this article, we compare in a pragmatic
way, and in the context of real animal populations, the use

of MCMC and SIS to make Bayesian inferences for SSMs of
animal population dynamics.

MCMC has been the more commonly used procedure for
fitting such SSMs. Meyer and Millar (1999) have used WinBUGS

(Lunn et al., 2000), which is based on MCMC, to fit a rela-
tively simple SSM for albacore biomass, while others (Rivot
et al., 2004; Michielsens et al., 2006) have used it for more
complex population SSMs. Due to the often high degree of de-
pendence between state variables and parameters in an SSM,
however, we have sometimes found WinBUGS either very slow
to converge or very sensitive to the choice of initial values with
slight changes causing the program to fail. To speed or ensure
convergence, MCMC software tailored to the SSM is often re-
quired, with careful choices needed for proposal distributions,
parameterization, and updating schemes.

Conversely, SIS has been seldom used to fit SSMs for pop-
ulation dynamics (e.g., Trenkel et al., 2000; Thomas et al.,
2005; Newman et al., 2006). It is an alternative that biome-
tricians may want to consider because in its most basic form
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SIS is a more automatic procedure in that the state equations
can be written down with little concern about the difficulty
of evaluating the probability functions, in contrast to most
MCMC implementations, which require such evaluations. SIS
proceeds through a times series forward in time and, hence,
it is a natural tool to consider for inference in population dy-
namics models. It also handles very easily the incorporation
of new time points at the end of the series. On the other
hand, Monte Carlo variation of SIS algorithms can be quite
high, even for quite large samples. The root of the problem is
particle depletion: a single simulated realization of the SSM’s
states and parameters is called a particle, and particle de-
pletion is the phenomenon whereby the number of different
particles with nonnegligible weights gets successively smaller
as the simulation of the time series proceeds forward in time.
Even when the number of simulated particles is very large (in
the millions), the effective number of different particles can
be very small (in the tens). This is especially problematic for
static (as opposed to time varying) parameters.

Comparisons of MCMC and (nonsequential) importance
sampling have been made from a theoretical perspective; e.g.,
Bassetti and Diaconis (2006) used eigen analysis to show that
the Metropolis algorithm is comparable to or better than the
importance sampler, in terms of precision, sometimes by an
exponential amount, for the examples they tried. While rela-
tive Monte Carlo (MC) variation (across different runs of the
algorithm) of the two procedures is important, so are imple-
mentation ease and computational efficiency. In particular, we
wish to compare the degree of difficulty in setting up reason-
ably efficient procedures for fitting relatively complex animal
population SSMs.

Although the article focuses on comparison of computa-
tional methods, the problem chosen for application is a real-
life animal population with complex dynamics and substan-
tive management issues, the British grey seal (Halichoerus
grypus) metapopulation. The remainder of the article is orga-
nized as follows. Section 2 briefly describes SSMs and the gen-
eral use of SIS and MCMC to fit SSMs. Section 3 defines the
SSM for seals, describes the particular implementations of SIS
and MCMC, and presents the results. Section 4 compares and
contrasts our experience using SIS and MCMC to fit animal
population SSMs. Web Appendix A contains an additional
example using simulated data for a Chinook salmon (On-
corhynchus tshawytscha) population, whereas Web Appendix
B provides additional comparisons of SIS and MCMC for sim-
ulated seal data.

2. SSMs for Animal Populations and Monte
Carlo Inference

SSMs are models for two time series running in parallel: one,
labeled the state process with value nt at time t, that is un-
observed, and a second, called the measurement or observa-
tion process with value yt at time t, that is observed and
is a function of the state process (Harvey, 1989). A realiza-
tion of the state process from time a to time b is denoted
na :b = (na , . . . , nb ), with similar notation for the observation
process.

For animal population dynamics SSMs, the state process
often describes the true, but unobservable, population demo-
graphics as they change over time. Excepting models for popu-
lation biomass (e.g., Meyer and Millar, 1999), the components

of nt are often counts of subpopulations, for example, age 1
females. The observation process is a model for samples from
or estimates of the population, and yt has components that
correspond to state components, or aggregated sets of them,
for example, an estimate of all females.

The probabilistic structure for SSMs can be written as a set
of three probability density or mass functions (for conciseness
we refer to both as pdfs), as follows:

g0(n0 | η) Initial state pdf, (1)

gt (nt |nt−1, η) State process pdf, (2)

ft (yt |nt , ψ) Observation process pdf, (3)

where t = 1, 2, . . . , T and η and ψ are vectors of parameters.
We will use θ to denote (η, ψ).

In a Bayesian context, the inference objectives for SSMs
include generating a sample from the posterior distribution for
the states and unknown parameters conditional on the entire
observation time series, y1:T . Denoting by π(θ) the prior pdf
of the parameters, the joint posterior pdf can be written as

π(n0:T , θ |y1:T ) ∝ π(θ)g0(n0 | η)

×

{
T∏

t=1

gt (nt |nt−1, η)ft (yt |nt , ψ)

}
. (4)

Direct evaluation of gt (nt |nt−1, η) can be difficult. The
evolution from nt−1 to nt is often the result of a sequence
of stochastic and deterministic subprocesses. For example,
suppose that three stochastic subprocesses take place in the
following order: survival, movement between different areas
and, finally, harvest. An intuitive way of modeling the sub-
processes is to specify separate pdfs for each of them; e.g.,
g1t ( ) for survival, g2t ( ) for movement, and g3t ( ) for harvest.
Consequently gt (nt |nt−1, η) is difficult to evaluate directly
because the output from one process becomes input to the
next process and nt is the result of composite functions and
convolutions. Computational procedures can be made easier
by augmenting the state process to include intermediate vec-
tors, say u1t , u2t , u3t , where u3t = nt , which describe the state
vector immediately after each subprocess, and the correspond-
ing transitional pdfs, g1t , g2t , g3t , may be simple to evaluate.

2.1 Sequential Importance Sampling
Here we briefly describe SIS in general, beginning with a re-
view of importance sampling. Let π(x) denote the target pdf
from which a sample is sought. Ordinary (nonsequential) im-
portance sampling begins by generating a sample of size N
from h(x), the importance sampler, whose support includes
the support of π(x). Denoting each generated value by x(i), i =
1, . . . , N , weights per value are calculated by w(i) = π (x (i ))

h (x (i ))
. Ex-

pected values of arbitrary functions, m(X), with respect to the
target pdf π(x), are estimated by

Ê{m(X)} =

N∑
i=1

m(x(i))w(i)

N∑
i=1

w(i)

. (5)
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The degree of MC variation between samples depends on how
closely h(x) matches π(x). An unweighted sample from π(x)
is generated by resampling (with replacement) the x(i) values
with weights proportional to w(i), where the x(i) with higher
weights should appear more frequently.

For SSMs the target distribution is π(n0:T |y1:T ) (ignoring θ
here), which is typically of high dimension. Directly specifying
an efficient high-dimensional importance sampler, h(n0:T ), is
difficult. The strategy behind SIS is one of divide and conquer:
construct the importance sampler and weights incrementally,
one time period at a time. Start with a sample of the initial
state n0 with weights w

(i)
0 , i = 1, . . . , N . Then, sequentially for

each time period t = 1, . . . , T : (a) Generate a sample of size
N for the state nt using an importance sampler ht (nt ), where
ht could depend on n0:t−1 and y1:t ; (b) Calculate new weights

w
(i)
t = w

(i)
t−1

g t (n(i )
t

|n(i )
t−1)ft (yt |n(i )

t
)

h t (n(i )
t

)
. Resampling at some interme-

diate time points is generally done, thereby “pruning” away
values with relatively low weights and increasing the number
of values with higher weights. The “resampling schedule” can
be critical to the quality of the SIS performance. If the state
pdf gt (nt |nt−1) is used for ht (nt ), the weights are updated
simply by the likelihood, f t (yt |n(i)

t ), thereby avoiding the
need to evaluate the state pdf. This will prove useful in certain
cases with multiple subprocesses where the state pdf cannot
be evaluated but it is possible to sample from it (as illustrated
later in the seal application). Each generated sequence, n(i)

0:T ,
is sometimes referred to as a particle. SIS is an example of a
particle filter in that it provides for each time point, t = 1,
2, . . . , T , a sample from π(n0:T |y1:T ) (Harvey, 1989).

2.2 MCMC
MCMC is also a divide and conquer strategy to generating a
sample from π(n0:T |y1:T ) (ignoring θ momentarily). In con-
trast to SIS, which generates N independent samples of state
nt in one iteration, MCMC generates one sample of n0:T in
each of B + N sequential iterations. The first B iterations,
the burn-in, are discarded, and the last N iterations are a de-
pendent sample from π(n0:T |y1:T ). Additional general back-
ground on MCMC methods and applications can be found in
Gilks et al. (1996).

Here we briefly mention aspects of the most widely used
MCMC algorithm, Metropolis–Hastings, in the context of an
SSM. Let the superscript i − 1 denote values at the end
of iteration i − 1. At iteration i, the state vectors n(i−1)

0 ,
n(i−1)

1 , . . . , n(i−1)
T are updated sequentially (divide and conquer

strategy), updating nt conditional on the other time periods,
as follows. A candidate value n(c )

t is generated from a pro-
posal distribution ht (nt |n(i−1)

t ), which can depend on n(i−1)
t ,

the current values of the other states, and y1:T . The new value
is n(i)

t = n(c )
t with probability

MH
(
n(c )

t ,n(i−1)
t

)
= min

{
1,

gt

(
n(c )

t

∣∣n(i)
t−1

)
ft

(
yt

∣∣n(c )
t

)
gt+1

(
n(i−1)

t+1

∣∣n(c )
t

)
gt

(
n(i−1)

t

∣∣n(i)
t−1

)
ft

(
yt

∣∣n(i−1)
t

)
gt+1

(
n(i−1)

t+1

∣∣n(i−1)
t

)
×

ht

(
n(i−1)

t

∣∣n(c )
t

)
ht

(
n(c )

t

∣∣n(i−1)
t

)}
, (6)

whereas with the remaining probability, n(i)
t = n(i−1)

t . Note
that evaluation of the acceptance probability for states re-
quires evaluation of state pdfs corresponding to two consecu-
tive time periods, t and t + 1. Evaluation of the state pdf can
be impossible in certain cases with multiple subprocesses, in
which case a common solution is the inclusion of latent states
corresponding to intermediate subprocesses whose pdfs can
be evaluated (as will be shown in the seal application).

Figure 1 compares SIS and MCMC graphically. Whereas
SIS proceeds from left to right, on a column basis, MCMC
moves from top to bottom, filling in one row at each iteration.

3. Modeling the British Grey Seal Metapopulation
British grey seals are an iconic conservation species in the
United Kingdom. They were hunted nearly to extinction and
became the first mammal to be protected by modern legisla-
tion in 1914. Since then their numbers have increased substan-
tially and there are now conflicts between fishermen and con-
servationists over seal management. Scientific advice, based
in part on the models and methods in this article, is pro-
vided to the Scottish and U.K. governments via a committee
of scientists that meets annually.

Grey seals breed colonially, mostly on the offshore islands
around Scotland. Because grey seals spend most of their time
under water, they are very difficult to survey, with only data
from aerial surveys of pups available. Pup numbers overall
are estimated to have grown at about 6% per year since sur-
veys began in the early 1960s, although the trajectory varies
regionally. Management concerns include the effect of preda-
tion on fish populations (Buckland et al., 2007) and scientific
questions include how local densities may affect pup survival
and between-colony migration (Thomas et al., 2005).

The data available consisted of estimated numbers of pups
born, based on 19 years of aerial surveys of seal breeding
colonies (1984–2002). The numbers were aggregated into four
geographically distinct regions: 1 (North Sea, 4 colonies), 2
(Inner Hebrides, 19 colonies), 3 (Outer Hebrides, 11 colonies),
and 4 (Orkneys, 22 colonies). Observations for the first year
(1984), denoted t = 0, were used as a basis for specifying the
initial state pdf and are no longer considered as part of the
observation vector. Relative to the available data, estimated
numbers of pups born on each colony, the underlying pop-
ulation dynamics model (the state process defined below) is
admittedly overparameterized, a reflection of the complexity
of the dynamics as well as the questions being asked. Conse-
quently, the influence of prior distributions for some param-
eters was expected to be sizeable and expert knowledge was
used to specify several priors.

A simulation study was also conducted to evaluate bias and
MC variation in posterior samples generated by MCMC and
SIS. Mimicking the real data, we simulated five datasets, each
with 19 years of data. The parameters chosen were equal to
the prior means and the state and observation vectors were
simulated according to the processes described below.

3.1 SSM Formulation

State process. Per region, there are seven components in the
state vector: the number of pups (age 0 males and females),
the number of age a females, a = 1, . . . , 5, 6+. We denote by
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Figure 1. Graphical comparison of SIS and MCMC algorithms for simulating a sample of size N from π(n0:T |y1:T ). The
superscripts indicate sample number and the subscripts denote the point in time; e.g., n(i)

t is the ith sample of the state at
time t. Whereas SIS proceeds from left to right, MCMC goes from top to bottom.

n0,r,t the male and female pups and by na,r , t the number of
female seals aged a ∈ {1, . . . , 5, 6+}, in geographical region
r ∈ {1, . . . , 4}, in year t ∈ {0, 1, . . . , 18}. The yearly state pro-
cess consists of four subprocesses in the following sequence:
survival and age incrementation, gender assignment, move-
ment between regions, and birth. Following birth, a new time
period starts.

Survival, birth, and gender assignment are Bernoulli pro-
cesses. The survival probability for pups in region r at time
t, φr,t , is density dependent and varies between regions ac-
cording to the Beverton–Holt model (Quinn and Deriso,
1999)

φr,t =
φj

1 + βr n0,r,t−1
, (7)

where φj is an upper bound on juvenile (pup) survival. Age
1+ female seals have a constant annual survival probability,
φad . Age 6+ females give birth to a single pup with probability
α, and pups are female with probability 0.5.

Regarding movement, we assume that only age-5 (prebreed-
ing) females can move from their natal regions, and once they
move, they remain faithful to their new region. Let n∗

5,r,t and
n5,r,t denote numbers in region r before and after movement,
respectively, and pr,t the probability that an age-5 female is
in region r after movement. We assume that

(n5,1, t , n5,2, t , n5,3, t , n5,4, t )

∼ Multinomial

(∑
r

n∗
5,r,t ; p1, t , p2, t , p3, t , p4, t

)
, (8)
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with probabilities

pr,t =

4∑
i=1

n∗
5, i , t ρi→r,t

4∑
i=1

n∗
5, i , t

,

where ρi→r,t is proportional to 1 for r = i and, for r �= i, to
γdd max(φr,t − φi,t , 0) exp{−γ dist d(i, r)}, where the propor-
tionality factor ensures that

∑4
r=1 ρi→r,t = 1. The parameters

γdd (where dd stands for density dependence) and γ dist are
both positive and d(i, r) denotes sea distance between regions
i and r. Hence, the probability odds of migrating to a differ-
ent region are zero for regions whose expected pup survival
probability is not larger than in the original region. The odds
of migrating to a better region are proportional to the incre-
ment in pup survival probability multiplied by a decreasing
function of the distance between the regions. In other words,
better pup survival probability and distance between regions
stimulate and deter migration, respectively.

Thus, for t = 1, . . . , 18, the state equations are as follows:
For each of the four regions (r), we have the following inde-
pendent survival and birth processes:

n1,r,t ∼ Binomial(n0,r,t−1, 0.5φr,t ), (9)

na,r,t ∼ Binomial(na−1,r,t−1, φad ), for a = 2, 3, 4, (10)

n∗
5,r,t ∼ Binomial(n4,r,t−1, φad ), (11)

n6+,r,t ∼ Binomial(n5,r,t−1 + n6+,r,t−1, φad ), (12)

n0,r,t ∼ Binomial(n6+,r,t , α), (13)

whereas the movement process (8) links all four regions.

Observation process. For each year t = 1, . . . , 18, the obser-
vations yr,t consist of an estimate of pup numbers for each
region r. We assume that they are independent and normally
distributed with mean n0,r,t and coefficient of variation ψ−1/2:

yr,t ∼ N
(
n0,r,t , n

2
0,r,t /ψ

)
, ψ > 0. (14)

Prior distributions and initial state pdf. Independent prior
distributions for the model parameters were developed from
consultation with grey seal biologists (below). The distribu-
tion for initial pup numbers, n0,r,0, was the product of a Gaus-
sian variable centered on the pup estimates for 1984 (taken
as t = 0) and an independent Uniform(0.7,1.3) variable, to
incorporate additional variation. The distributions for initial
age-1 to age-5 seal numbers used n0,r,0, equations (9) and (10)
repeatedly, with t − 1 (on the right-hand sides) replaced by 0.
Lastly, n6+,r,0 was taken to be equal to n0,r,0 plus a negative
binomial distribution with parameters n0,r,0 and α. As was
done for age 0, extra variation was incorporated in all ages
via multiplication by independent Uniform distributions. This
was followed by rounding to the nearest integer. More details
can be found in Thomas et al. (2005).

Many parameters and states will be poorly identified from
the data, in the sense that there can be alternative fits that are
consistent with the observations; this will lead to severe corre-
lations in the posterior distribution. The latter coupled with
the high dimensionality of the posterior distribution, makes

obtaining a sampling from it very challenging. Next, we indi-
cate some main features of the computational algorithms we
implemented.

3.2 SIS Implementation
The SIS algorithm used was essentially that of Liu and West
(LW; 2001). Their method combines inference for unknown
states and parameters simultaneously, using the auxiliary par-
ticle filter (Pitt and Shephard, 1999) in combination with ker-
nel smoothing of parameters. For additional details of the
LW algorithm we recommend Liu and West (2001) and the
tutorial-style explanation given by Newman et al. (2006).
Here we note the modifications we made to increase algorithm
efficiency.

To begin, the dimension of the parameter space to sample
via SIS was reduced by analytically integrating out the un-
known precision parameter of the observation pdf, ψ, from the
posterior distribution π(n0:T , η, ψ |y1:T ). Thus SIS was used
to generate a sample from π(n0:T , η |y1:T ), where η denotes
the parameters in the state process. The conditional distri-
bution of ψ, π(ψ |n0:T , η, y1:T ) was Gamma and a sample
from it was directly generated using the posterior sample for
n0:T , η.

To initialize the SIS routine, samples of the parameters
(excluding ψ) and states in the initial year were generated di-
rectly from the prior and initial state pdfs. For the remaining
years, the state process pdfs in Section 3.1 were used as the
importance sampler, generating the entire state vector with
28 components (ages 0 to 6+ for each of the four regions).
Age-5 numbers before movement are considered as a result of
an intermediate subprocess (survival from age 4) and not part
of the state vector. Kernel smoothing of the parameters in the
LW algorithm was done using a multivariate normal distribu-
tion. Parameters restricted to a portion of the real number
line were transformed to R1 before smoothing; i.e., the sur-
vival and birth probabilities and the density-dependent pa-
rameters, βr , (which were a posteriori always smaller than 1)
were logit transformed, and the movement parameters were
log transformed. The degree of kernel smoothing was quite
small with the weight of over 98% given to the original value
and less than 2% to the total sample average.

To attempt to reduce particle depletion, and consequently
MC variation, we modified the LW algorithm to include re-
jection control (Liu, 2001). The general idea is to oversam-
ple, generate M > N particles, fix a cutoff value for weights,
say the 95th percentile, keep all particles in the top 5% of
weights, randomly subsample particles in the lower 95% of
weights, and then adjust the weights of the selected particles
appropriately. For the analysis of the simulated and the real
data, multiple parallel runs were made with each run using
the rejection control procedure twice: it was used after the
first year, t = 1, then after the LW algorithm was carried out
for years t = 2, . . . , 18, it was used for the final year, with the
entire process repeated until a sample of size N was attained.

3.3 MCMC Implementation
The MCMC implementation was tailored for the seal SSM
to speed convergence and increase precision in the posterior
samples.
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Analytical integration of parameters and states was per-
formed whenever possible, substantially reducing the dimen-
sion of the posterior distribution being sampled by MCMC.
In addition to the parameter ψ which was also integrated out
analytically for SIS, the birth probability parameter, α, and
the states n1,r,t , n2,r,t , n3,r,t , and n4,r,t were integrated out.
These parameters and states were then directly sampled from
the MCMC generated posterior samples for the other parame-
ters and states. However, unlike for SIS, the state vector must
be augmented with the number of age-5 seals before move-
ment, n∗

5,r,t , to be able to evaluate the state pdfs intervening
in the Metropolis–Hastings acceptance probabilities. This is
because it is not possible to derive analytically an expression
for the state process pdf to go from numbers age 4 in one year
to numbers age 5 (after movement) in the following year.

Reparameterization was used to facilitate sampling. In-
stead of sampling γdd we used a new parameter γm = γddφj

which effectively removed φj from the movement distribu-
tion. To summarize, the parameters and states sampled via
MCMC were φad , φj , γm , γ dist , β 1, . . . , β 4, n0,r,t , n5,r,t , n∗

5,r,t ,
and n6+,r,t for each region r and time period t.

The conditional posterior densities of φad and φj are log
concave and these parameters were sampled directly using
Gibbs sampling via adaptive rejection sampling (Gilks and
Wild, 1992). For the remaining parameters and states, the
Metropolis–Hastings algorithm was used, using t distribu-
tions as proposals (truncated to the relevant domain and dis-
cretized, as appropriate), matching the mode and curvature
at the mode of the corresponding conditional posterior pdf.

The previous paragraphs describe very succinctly our
MCMC sampling strategy; however, the details were ex-
tremely intricate. Much of the added complication arose from
the movement model (from the fact that for i �= r, ρi→r,t is
strictly positive only if φr,t > φi,t ) and from the distribution
of states in the initial year.

Figure 2 provides a schematic side-by-side comparison of
our SIS and MCMC implementations for the seal application.

3.4 Results
The SIS code was written in ANSI C and MCMC code in
FORTRAN 77; both are available on request from the authors.
Computation times reported here are from program runs on
the same computer (a dual AMD Operon 248 processor with
2GB RAM).

3.4.1 Simulated data. For each of the five simulated
datasets we did five MCMC and SIS runs. After initial experi-
mentation with various lengths, we found that MCMC runs of
B = 1.5 million and N = 1.5 million iterations (taking about
12 hours) appeared acceptable in terms of getting consistent
results from widely dispersed starting values. For compara-
bility with the MCMC results, we used the same total run
time (12 hours) for SIS, which meant generating 20 million
particles. These were generated in 20 batches of 1 million par-
ticles, to avoid computer memory issues. As a final check, we
performed a single long run for each dataset of MCMC (B =
5 million and N = 15 million, about 80 hours computation
time per run) and SIS (300 million particles, about 180 hours
computation time per run), which led to results that were
consistent within datasets to within two significant figures for

posterior means and standard deviations of parameter and
states.

For the MCMC implementation, the proposal distributions
for Metropolis–Hastings led to very high acceptance proba-
bilities, always above 70% and in the vast majority of cases
around 95%. Most of the time was spent numerically comput-
ing modes of target distributions.

Table 1 is a summary of the results for inference (based
on the five shorter runs for each of the five datasets) about
the parameters and some of the states. When averaged across
the 25 runs, the differences between SIS and MCMC in poste-
rior means and standard deviations for parameters were typ-
ically less than 5% (Table 1), with the exception of the mean
for the movement density dependence parameter, γdd , and
the standard deviation for the birth probability parameter α.
There were, however, small but consistent differences in pos-
terior means for parameters between MCMC and SIS within
datasets (see Web Appendix B), which we suspect are due
to bias in SIS caused by the kernel smoothing. For the states
shown (pups and age 6+), the posterior means were quite sim-
ilar (within 1% of each other); however, the posterior standard
deviations tended to be larger for SIS. MC variation (mean-
ing the variation obtained from different runs of an algorithm
given a dataset) for parameters was generally greater for SIS
than for MCMC, as can be seen from the average coefficients
of variation of the posterior means and standard deviations
displayed in Table 1, with the exception of the average coef-
ficient of variation of standard deviations for α. The pattern
of MC variation in the states, however, was less consistent,
with SIS having greater variation for pups and MCMC having
greater variation for age 6+ females. The larger MC variation
for α and age 6+ abundances can be largely attributed to the
severe autocorrelation in the MCMC draws (e.g., for α the
value was above 0.9 at lag 50) and a negative correlation be-
tween α and age 6+ abundances, resulting in slow mixing and
a need for very long runs. The correlation between α and age
6+ abundances is due to only having pup estimates and no
estimates of adult female seals: the number of pups observed
can be explained by many combinations of birth probabilities
and number of mature females.

3.4.2 Real data. As with the longer MCMC and SIS runs
for the simulated datasets, MCMC was carried out with B = 5
million and N = 15 million and SIS results were based on 300
million particles. Marginal prior and posterior distributions
for selected parameters are shown in Figure 3. Posterior means
for the parameters from the SIS and MCMC runs were quite
close in value (Table 2) with the exception of the density-
dependent movement parameter, γdd , and the observation er-
ror parameter, ψ. The MCMC results indicated stronger site
fidelity (i.e., smaller γdd value) than SIS; the reason for the
difference is not understood, especially in light of the oppo-
site ordering between MCMC and SIS in estimates of γdd

based on the simulated data. The mean for ψ was 8% lower
for SIS than for MCMC and is possibly due to bias in kernel
smoothing.

Results for the pup numbers are shown in Figure 4. Pos-
terior 95% central credible intervals are much narrower than
a priori. A similar reduction in uncertainty was attained for
other unobserved age categories (not shown here). In other
words, just tying down the value of one of the states (numbers
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Figure 2. Comparison of SIS and MCMC algorithms used to simulate a sample of size N from the posterior distribution
from π(n0:T , η |y1:T ). Notation corresponds to Sections 2 and 3; “wp” means with probability, and ARS is adaptive rejec-
tion sampling. With ψ integrated out of the SIS algorithm, the weights are updated using complicated functions of y1:4,1:t ,
E[n0,1:4, t |n5:6,1:4, t−1], and n0,1:4,1:t , denoted F 1(y1:4,1:t |n(i)

0,1:4,1:t ) and F 2(y1:4,1:t |n(i)
0,1:4,1:t ); rejection control is not shown.

age 0, which are the only ones observed) at each time point has
helped substantially to reduce uncertainty about the values of
the other states. Note that the recorded numbers of pups are
subject to observation errors, whereas the credible intervals
reflect uncertainty in the true numbers of pups. Hence more
than 5% of the observations fall outside the bands, as would
be expected.

The paucity of data relative to model complexity was man-
ifested in two ways. Firstly, the strong similarity of the prior
and posterior distributions for some parameters (e.g., φj , in
Figure 3) suggests strong prior influence. Secondly, strong cor-
relations exist between some of the parameters and states,
reflecting identifiability issues. For example, as for the simu-
lated data results, α and n6+,r,t are negatively correlated (the

correlation coefficient ranged from −0.75 to −0.32), which is
due to the lack of observations on adult female seals. The
adult survival parameter φad displays a correlation of about
−0.9 with juvenile survival probabilities φr,t for each region
and time period, while the latter are positively correlated
among themselves. There is also extreme positive correlation
(around 0.99) between numbers of adult female seals of dif-
ferent ages in the same cohort, but not with the number of
pups, a consequence of having an observation on the latter
quantity.

A major goal of the modeling has been to estimate the to-
tal population size using pup counts alone. Such estimates
are used as inputs to models that then estimate fish con-
sumption by seals. Even with such relatively sparse data and
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Table 1
Simulation study results for inference about parameters and some of the states. All results are averaged
over the five simulated datasets. Per dataset, five runs were carried out of MCMC and SIS. Averages of

means and SDs are the average values of the posterior means and standard deviations for the 25 estimates
(five datasets × five estimation runs). Average of CVs is the average (across datasets) of the coefficient of

variation (%) corresponding to five runs of each given dataset. For example, for each dataset SIS was
carried out five times and the CV of posterior means was calculated. Subsequently, the CVs from the five
datasets are averaged resulting in the values shown in the table. The true β values, averages, and standard

deviations have been multiplied by 104. The true states are averages over the five datasets.

Average of Avg. of CVs Average of Avg. of CVs
Means for Means SDs for SDs

Parameter True SIS MCMC SIS MCMC SIS MCMC SIS MCMC

α 0.95 0.95 0.96 0.63 0.67 0.047 0.032 8.91 19.40
φad 0.95 0.95 0.95 0.11 0.12 0.012 0.011 7.28 5.97
φj 0.70 0.68 0.67 1.75 1.24 0.099 0.099 6.14 4.00
γdd 3.89 3.57 3.88 6.19 5.17 2.72 2.71 12.29 7.70
γ dist 0.50 0.49 0.49 6.73 0.68 0.33 0.32 11.27 0.75
β 1 8.30 8.42 8.88 2.51 1.22 2.00 2.05 10.02 2.31
β 2 11.80 13.08 13.73 2.78 1.40 3.14 3.27 10.89 2.11
β 3 3.00 3.52 3.69 2.72 1.78 0.95 0.94 12.35 3.72
β 4 2.30 2.20 2.29 2.80 1.10 0.57 0.57 10.85 2.42
ψ 140 133.2 139.0 0.92 0.45 24.19 24.85 1.44 0.31

States True SIS MCMC SIS MCMC SIS MCMC SIS MCMC

n0,1,9 2518 2493 2489 0.22 0.07 71 61 2.24 1.90
n0,2,9 1937 1900 1896 0.18 0.11 56 48 4.27 1.93
n0,3,9 7957 7903 7872 0.25 0.16 216 183 2.73 3.63
n0,4,9 7932 7946 7906 0.25 0.16 211 184 4.86 3.93
n0,1,18 3173 3189 3190 0.24 0.20 132 117 3.13 2.86
n0,2,18 2265 2227 2229 0.23 0.20 89 80 3.04 2.31
n0,3,18 9045 8663 8650 0.28 0.23 353 313 3.12 3.92
n0,4,18 10,730 10,976 11,006 0.32 0.20 456 406 3.32 4.90
n6+,1,9 2644 2627 2586 0.69 0.74 154 112 8.45 15.45
n6+,2,9 2038 2002 1970 0.72 0.71 117 86 8.47 16.09
n6+,3,9 8380 8328 8182 0.80 0.83 493 351 9.56 15.04
n6+,4,9 8349 8373 8215 0.66 0.78 478 346 8.40 17.29
n6+,1,18 3324 3367 3315 0.73 0.76 238 172 7.46 12.24
n6+,2,18 2389 2351 2317 0.60 0.76 161 117 5.94 12.38
n6+,3,18 9510 9145 8990 0.78 0.82 626 462 7.25 11.99
n6+,4,18 11,275 11,587 11,438 0.72 0.77 821 584 9.82 13.56

a relatively complex model, we have still gained useful knowl-
edge. Our simulations show that adult female numbers are
estimated quite accurately when the correct model is used,
and the results on real data show considerable reduction in
uncertainty on total population size relative to priors. How-
ever, additional work (not reported here) has shown extreme
sensitivity of estimates of adult population size to the bio-
logical process model used. For example, an equally plausible
model includes density dependence in fecundity, rather than
in juvenile survival. This model produces an almost indistin-
guishable fit to the pup count data, but posterior estimates of
adult population size are around four times larger. A major
outcome of this work has been to focus discussion on alterna-
tive methods of obtaining a single, independent estimate of
total population size to calibrate the biological models.

Of additional biological interest, we note the shift in the
posterior for γdd toward smaller values than the prior indicate
stronger site fidelity than thought a priori. Allowing for the
influence of priors, we also note that the degree of density

dependence in juvenile survival is largest in the Inner Hebrides
colonies (region 2), as the posterior distribution is centered on
larger β 2 values.

4. Discussion and Conclusions
Our primary motivation was to answer the question of
whether MCMC or SIS is a better underlying engine for soft-
ware for ecologists to fit SSMs to animal population data. To
answer this, we applied both methods to two problems, one
for seals and one for salmon (described in Web Appendix A).
We were successful with both approaches in the sense that we
produced samples from the posterior distribution for param-
eters and states with acceptable levels of MC variation, and
based on simulated data, with acceptable accuracy.

To determine which is better, we use the following crite-
ria: ease of implementation (how difficult to translate SSM
equations into computer code), computational efficiency (how
much computing time and resources are needed to achieve an
acceptable level of MC variation), and accuracy (how close
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Figure 3. Posterior distributions for some parameters using MCMC (dashed line) and SIS (dotted lines). Solid lines are the
prior densities.

the sample posterior distribution is to the true distribution).
These criteria can be at odds with each other, e.g., an easily
implemented algorithm can be relatively inefficient and inac-
curate. Thus one needs to balance time spent selecting and
coding a SIS or MCMC algorithm with computational time
and resources.

Our conclusion is that there is no clearcut choice. For both
SIS and MCMC, ease, efficiency, and accuracy are a func-
tion of both the SSM formulation and the available data. For
the salmon, a relatively straightforward population dynamics

model with ample data, design, and implementation of suit-
ably efficient and accurate MCMC and SIS algorithms were
relatively easy, although MCMC was less mechanical. For the
seals, a complex metapopulation dynamics model with sur-
vival, birth and movement processes, and very limited data,
considerable effort was needed to produce satisfactory MCMC
and SIS implementations.

We close with some general observations and conclusions
about using MCMC and SIS to fit SSMs, for animal popula-
tions in particular.
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Table 2
Prior distributions and posterior means and standard deviations for seal model parameters based on SIS
and MCMC. SIS results are based on a total of 300 million particles, while MCMC results are based on a
burn-in of 5 million followed by a run of 15 million. The values for the β’s have been multiplied by 104.

Mean SD

Param Prior E[Prior] SIS MCMC SIS MCMC

α Beta(22.05, 1.15) 0.950 0.948 0.970 0.052 0.027
φad Beta(22.05, 1.15) 0.950 0.974 0.976 0.012 0.011
φj Beta(14.53, 6.23) 0.700 0.719 0.710 0.091 0.093
γdd Gamma(1.00, 3.89) 3.890 0.711 0.459 0.942 0.572
γ dist Gamma(2.25, 0.22) 0.500 0.548 0.579 0.374 0.381
β 1 Gamma(4, 2.07 × 10−4) 8.30 8.34 8.28 2.13 2.13
β 2 Gamma(4, 2.96 × 10−4) 11.80 12.80 13.14 3.14 3.20
β 3 Gamma(4, 7.40 × 10−5) 3.00 3.88 4.07 1.11 1.13
β 4 Gamma(4, 5.76 × 10−5) 2.30 1.46 1.39 0.41 0.40
ψ Gamma(2.1, 66.67) 140 114.0 123.7 21.2 23.4

1. Similarities. First, both are “divide and conquer” strate-
gies for generating samples from high-dimensional pos-
teriors: both work with just one time period at a time,
although SIS generates a sample of the desired size for
one time period before moving to the next whereas
MCMC moves through all the time periods in each sin-
gle sample (see Figure 1). Second, the choice of a pro-
posal distribution in MCMC is analogous to the choice
of an importance distribution in the SIS methods. In
both cases poor choices can lead to high MC error: a
poor proposal distribution in MCMC leads to slow or
little movement through the parameter and state space
(“slow mixing”), and a poor sampler in SIS will have
high particle depletion yielding just a small number of
different values.

2. Ease of implementation and effect on model formulation.
For SSMs with a complex state process pdf, SIS sam-
plers are relatively mechanical to implement, so long as
the importance sampler simulates the individual sub-
processes, e.g., survival, movement, harvest, birth, that
characterize the state process.

MCMC can be mechanical, too, so long as the state
process pdf does not need to be evaluated; e.g., when
Gibbs sampling is possible for all the states and all the
parameters. However, this will typically not be the case
for SSMs. Implementing a Metropolis–Hastings algo-
rithm can also be mechanical at the proposal stage (e.g.,
if candidate values are generated from Normal distribu-
tions centered at current values), but the acceptance
probability formula requires evaluation of the state pdf,
which can be impossible in cases with intermediate sub-
processes. A solution is to extend the state vector to in-
clude intermediate or latent components (as was done
for the seal model, for example, by adding premovement
age-5 females) and thus evaluate tractable subprocesses
pdfs.

With several subprocesses, this can become cumber-
some and it may be more attractive to reformulate a
more tractable model. This was what happened for the
seal model, where an earlier formulation of the move-

ment subprocess involved four multinomial distribu-
tions, one for the age-5 females at each colony (Thomas
et al., 2005); e.g., the numbers of age-5 females at colony
1 that stay at 1 or move to colonies 2, 3, or 4 were
multinomially distributed. This formulation was sub-
sequently modified to a single, somewhat complicated
multinomial (equation (8)) to simplify the evaluation
of the state process pdf, which otherwise would involve
evaluating the pdf for a convolution of four multino-
mials. For SIS, however, it was equally easy to work
with four multinomial distributions, and transparency
between the original conceptual formulation and the im-
plementation remained high.

SIS also has the advantage of providing the poste-
rior distribution after each intermediate time step t <
T. This can be a useful diagnostic for possible model
deficiencies, such as a parameter being treated as fixed
that should be time varying. MCMC can also provide
such information by fitting an SSM using just part of
the sample, y1:t , but this requires making another run
of the MCMC algorithm, which is time consuming.

3. Computational and statistical efficiency. The most eas-
ily implemented SIS algorithms, which simulate from
the state process alone and resample periodically (e.g.,
the bootstrap filter; Liu, 2001), can be very inefficient,
with sometimes impossibly large sample sizes required
to achieve acceptable MC error. For example, a boot-
strap filter applied to the seal example yielded an effec-
tive sample size of 4.9 unique samples after 600 million
particles had been generated. The LW algorithm is more
sophisticated and relatively easy to implement, but to
get sufficient accuracy for the seal example, additional
and complicated refinements were needed, such as ana-
lytically integrating parameters in the observation pdf
and using rejection control, along with still large sample
sizes.

A well-designed, which may mean difficult to set up,
MCMC sampler can be relatively efficient even for com-
plex SSMs. For the salmon model and a relatively in-
formative observation vector, given the same computing
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Figure 4. Top row: Observed data (triangles) and evolution over time of posterior 2.5, 50, and 97.5 percentiles of number
of pups (dashed lines–MCMC, dotted lines–SIS). Bottom row: Prior (solid lines) and posterior (dashed lines–MCMC, dotted
lines–SIS) 2.5 and 97.5 quantiles for number of pups over time.

time, the MCMC sampler had 5 to 10 times less MC
variation for parameters and states than the SIS sam-
pler (Web Appendix A). For the relatively complex seal
model with seven age classes but only pup estimates, the
MCMC sampler had less MC variation than SIS for all
parameter estimates but probability of birth (α), but
more MC variation for the age 6+ females (Web Ap-
pendix B), due presumably to the high correlation with
α. Thus the SIS sampler was competitive in a situation
where the data were relatively uninformative in relation

to the priors. From our experiences here we conclude
that problems of a level of difficulty (in terms of dimen-
sionality and correlation) similar to that displayed by
the grey seals problem are, at present, not amenable to
more or less automatic computational implementations.
In general, MCMC, tailored specifically for a particular
SSM where data are informative relative to the priors,
remains the gold standard, but SIS with repeated runs
to assess MC variation could prove a useful alternative
approach.
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5. Supplementary Materials
The Web Appendices, referenced in Sections 1, 3, and 4 are
available under the Paper Information link at the Biometrics
website, http://www.biometrics.tibs.org.
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