
Distance sampling

Distance sampling is a widely used group of closely
related methods for estimating the density and/or
abundance of biological populations. The main
methods are line-transect sampling and point-transect
sampling (also called variable circular plot sam-
pling). These have been used successfully in a very
diverse array of taxa, including trees, shrubs and
herbs, insects, amphibians, reptiles, birds, fish, and
marine and land mammals. In both cases, the basic
idea is the same. One or more observers perform
a standardized survey along a randomly located set
of lines or points, searching for objects of interest
(usually animals or clusters of animals). For each
object detected, they record the distance from the
line or point to the object. Not all the objects will be
detected, but a fundamental assumption of the basic
methods is that all objects that are actually on the line
or point are detected. Intuitively, one would expect
that objects become harder to detect with increasing
distance from the line or point, resulting in fewer
detections with increasing distance. The key to dis-
tance sampling analyses is to fit a detection function
to the observed distances, and use this fitted function
to estimate the proportion of objects missed during
the survey. From here, we can readily obtain point
and interval estimates for the density and abundance
of objects in the survey area. The basic methods
(sometimes called standard or conventional distance
sampling) are described in detail in Ref. 1, which
is an updated version of Ref. 2. Various extensions
and more advanced methods are considered in Ref. 3.
Free software, Distance [4], provides for the design
and analysis of distance sampling surveys, imple-
menting the methods described in Ref. 1 and many
of those in Ref. 3.

Distance sampling is an extension of quadrat-
based sampling methods. Two forms of quadrat sam-
pling are strip transects, in which one or more
observers move along a line, counting all objects
within a predetermined distance of the line, and point
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counts, in which numbers of objects (usually birds
or plants) in a circle about a point are counted.
Population density is then estimated by dividing the
total count by the total area surveyed. A fundamen-
tal assumption of these methods is that all objects
within the strip or circle are counted. This assump-
tion is difficult to meet for many populations, and
cannot be tested using the survey data. Furthermore,
especially for scarce species, the methods are waste-
ful because detections of objects beyond the strip or
circle boundary are ignored. If the width of the strip
or the radius of the circle is made sufficiently small
to ensure that detection of any object within the sur-
veyed area is almost certain, then a large proportion
of detections are outside the surveyed area and so
are ignored. Distance sampling extends quadrat-based
methods by relaxing the assumption that all objects
within the circle or strip are counted. By measuring
distances to the objects that are observed, the proba-
bility of observing an object within the circle or strip
can be estimated.

Another approach to estimating wildlife abun-
dance involves capture–recapture methods. These
are often more labor-intensive and more sensitive
to failures of assumptions than distance sampling.
However, they are applicable to some species that
are not amenable to distance sampling methods,
and can yield estimates of survival and recruit-
ment rates, which distance sampling cannot do.
Capture–recapture methods based on remote cam-
era traps have been used successfully for cryptic or
elusive species that show individual natural mark-
ings; DNA-based methods using hair-snares may also
be possible. Capture–recapture can be efficient for
populations that aggregate at some location each
year, whereas distance sampling methods are more
effective on dispersed populations. The two methods
should therefore be seen as different tools for dif-
ferent purposes. We also note that various “hybrid”
approaches take elements from both distance sam-
pling and capture–recapture – these include spatially
explicit capture–recapture and mark–recapture dis-
tance sampling (see the sections titled Related Meth-
ods and Standard Methods).

In fish population estimation, catch per unit
effort, catch-at-age, and catch-at-length are all com-
monly used to estimate abundance [5], as they require
that the commercial catch is sampled, which is more
cost-effective than sampling the living fish. Acoustic
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2 Distance sampling

surveys of fish schools can provide data amenable to
distance sampling methods.

Alternative methods for estimating animal abun-
dance are reviewed and compared in Refs 6–8.

First, the basic methods for line and point transects
are considered, before briefly reviewing some related
and extended methods.

Survey Design

As with any sampling exercise, obtaining reliable
results from a distance sampling survey depends crit-
ically on good survey design. This relies on the
fundamental sampling principles of replication and
randomization. Systematic random placement of sam-
pling units (lines or points) is preferable to a com-
pletely random design [1, 3], and stratification can
be employed to reduce variance. The design pro-
cess is facilitated by the software Distance, which
has built-in (GIS) functionality and implements auto-
mated design algorithms [3, 9]. It can generate survey
plans based on a range of point- and line-transect
designs, as well as performing simulations to compare
the efficiency of different designs and to investigate
design properties such as probability of each loca-
tion in the survey area being sampled (referred to as
coverage probability).

Line-transect Sampling

In line-transect sampling, a series of (systematic) ran-
domly located straight lines is traversed by one or
more observers. This may be achieved in various
ways, depending on the study species. In terres-
trial studies, potential modes of movement include
walking, horseback, all-terrain vehicle, airplane, and
helicopter. Transect surveys in aquatic environments
can be conducted by snorkeling or with SCUBA
gear, from submarines, surface vessels, aircraft, or
from sleds with mounted video units pulled underwa-
ter by a surface vessel. Passive acoustic surveys are
gaining popularity for marine mammal species (and
other taxa), in which case the “observer” is a towed
hydrophone array. In the case of large observation
platforms, there is typically a team of observers.

Estimation

Perpendicular distances x are determined from the
line to each detected object of interest. In practice,

(radial) detection distances r and detection angles
θ are often recorded, from which perpendicular
distances are calculated as x = r sin θ . Suppose
k lines of lengths l1, . . . , lk (with

∑
lj = L) are

positioned according to some randomized scheme,
and that animals further than some distance w from
the line (the truncation distance) are not recorded.
Then, the surveyed area is a = 2wL, within which
n animals are detected at perpendicular distances
x1, . . . , xn. Let Pa be the probability that a randomly
chosen animal within the surveyed area is detected,
and suppose an estimate P̂ a is available. Animal
density D is then estimated by

D̂ = n

2wLP̂a

(1)

To provide a framework for estimating Pa, we
define the detection function g(x) to be the proba-
bility that an object at distance x from the line is
detected, 0 ≤ x ≤ w, and assume that g(0) = 1 (i.e.,
that we are certain to detect an animal on the transect
line). If we plot the recorded perpendicular distances
in a histogram, then conceptually the problem is to
specify a suitable model for g(x) and to fit it to the
perpendicular distance data. As shown in Figure 1,
if we define μ = ∫ w

0 g(x)dx, then Pa = μ/w. The
parameter μ is called the effective strip (half-) width;

1.0

g(x)

m

m w

1.0 × w

x

Figure 1 The area μ under the detection function g(x),
when expressed as a proportion of the area w of the
rectangle, is the probability that an object within the
surveyed area is detected; μ is also the effective strip width,
and takes a value between 0 and w. (Source: Reproduced
from Ref. 10. © John Wiley & Sons, Ltd, 1998.)
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Distance sampling 3

it is the distance from the line for which as many
objects are detected beyond μ as are missed within
μ (Figure 1). Thus,

D̂ = n

aP̂a

= n

2wLμ̂/w
= n

2μ̂L
(2)

We now need to estimate μ. We can turn this into
a more familiar estimation problem by noting that
the probability density function (pdf) of perpendicular
distances to detected objects, denoted by f (x), is the
detection function g(x), rescaled so that it integrates
to unity (see Frequency curves). That is, f (x) =
g(x)/μ. In particular, because we assume g(0) = 1,
it follows that f (0) = 1/μ (Figure 2). Hence,

D̂ = n

2μ̂L
= nf̂ (0)

2L
(3)

The problem is reduced to modeling the pdf
of perpendicular distances, and evaluating the fitted
function at x = 0. The large literature for fitting
density functions is now available to us. The Distance
software uses the methods of Ref. 1, in which a
parametric “key” function is selected and, if it fails to
provide an adequate fit, polynomial or cosine series
adjustments are added until the fit is judged to be
satisfactory by one or more criteria.

Often, the perpendicular distances are recorded by
distance category, so that each exact distance need not

f (x)

Freq

m w x

Figure 2 The pdf of perpendicular distances, f (x), plot-
ted on a histogram of perpendicular distance frequencies
(scaled so that the total area of histogram bars is unity).
The area below the curve is unity by definition. Because the
two shaded areas are equal in size, the area of the rectangle,
μf (0), is also unity. Hence μ = 1/f (0). (Source: Repro-
duced from Ref. 10. © John Wiley & Sons, Ltd, 1998.)

be measured, or data are grouped into distance cat-
egories before analysis. Standard likelihood methods
for multinomial data are used to fit such “grouped”(or
“interval”) data [1].

Variance and Interval Estimation

The variance of D̂ is well approximated [1] using
the delta method:

v̂ar(D̂) = D̂2

[
v̂ar(n)

n2 + v̂ar[f̂ (0)]

[f̂ (0)]2

]
(4)

The variance of n generally is estimated from the
sample variance in encounter rates, nj/ lj . Examina-
tion of a range of possible estimators of this vari-
ance [11] showed that one based on weighting by line
lengths squared performed best when lines are placed
at random within the study area. This is the default
in the Distance software (versions 6 and higher). The
authors also proposed and evaluated estimators for
the case of systematic random parallel line placement
(a recommended design strategy); an updated esti-
mator with even better performance has since been
developed [12].

Given that f (0) is estimated by maximum
likelihood, its variance can be estimated from
the information matrix.

If we assume that D̂ is lognormally distributed,
approximately 95% confidence limits are given by
(D̂/C, D̂C) where

C = exp{1.96[v̂ar(ln D̂)]0.5} (5)

with

v̂ar(ln D̂) = ln

[
1 + v̂ar(D̂)

D̂2

]
(6)

Bootstrap resampling may also be used for vari-
ance and interval estimation. In this case, resamples
are usually generated by sampling with replacement
from the lines, so that independence between the lines
is assumed, but independence between detections on
the same line is not. If the model selection procedure
for the detection function is applied independently
to each resample, the bootstrap variance includes a
component because of model selection uncertainty.

Cluster Size Estimation

Animals often occur in groups, which we term clus-
ters . These may be flocks of birds, herds of ungulates,
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4 Distance sampling

pods of whales, and so on. If one animal in a cluster
is detected, then it is assumed that the whole cluster
is detected, and the distance to the center of the clus-
ter is recorded. Equation (3) then gives an estimate of
the density of clusters. To obtain the estimated den-
sity of individuals, we must multiply by an estimate
of mean cluster size in the population, E(s):

D̂ = nf̂ (0)Ê(s)

2L
(7)

Probability of detection is often a function of
cluster size, so that the sample of detected cluster
sizes exhibits size bias (larger clusters are easier to
detect and so are overrepresented in the sample). In
the absence of size bias, we can take Ê(s) = s̄, the
mean size of detected clusters. Several methods exist
for estimating E(s) in the presence of size bias [1]
(see Size-biased sampling). One that works well in
practice is to regress log(s) on ĝ(x), the estimated
probability of detection at distance x ignoring the
effect of cluster size, and then predict log(s) when
detection is certain, ĝ(x) = 1, as there can be no
size bias in that circumstance. The prediction is back-
transformed using a bias adjustment. Another option
to account for size bias is to include cluster size as an
additional covariate in the detection function (see the
section titled Multiple Covariate Distance Sampling).

Assumptions

The physical setting for line-transect sampling is
idealized as follows:

1. N objects are distributed through an area of
size A according to some stochastic process with
average rate parameter D = N/A.

2. Lines, placed according to some randomized
design, are surveyed and a sample of n objects
is detected.

It is not necessary that the objects be randomly
(i.e., Poisson) distributed. Rather, it is critical that the
line or point be placed randomly with respect to the
local distribution of objects. This ensures that objects
in the surveyed strip are uniformly distributed with
respect to distance from the line. Thus, if the strip has
half-width w, object-to-line distances available for
detection are uniformly distributed between zero and
w. Random line placement also allows valid design-
based extrapolation from the sample to the study area.

There are three key assumptions of the basic
method. Many extensions have been developed (see
section titled Extensions to Standard Methods) with
the aim of relaxing these assumptions.

1. Objects directly on the line are always detected,
i.e., g(0) = 1. Missing objects on the line causes
a corresponding underestimation of D.

2. Objects do not move. Conceptually, distance
sampling is a “snapshot” method: we would like
to freeze animals in position while we conduct
the survey. In practice, nonresponsive movement
is not problematic provided it is slow relative
to the speed of the observer. Responsive move-
ment before detection is, however, problematic
[13, 14].

3. Distances are measured accurately (for ungro-
uped distance data), or objects are correctly allo-
cated to distance interval (for grouped data).
Provided distance measurements are approxi-
mately unbiased, bias tends to be small in
the presence of measurement errors [1, 15–17].
Biased measurements, if uncorrected, are prob-
lematic, and in cases when detection distances
and angles are recorded, rounding of small angles
to zero can also cause problems with estimation.

A fourth assumption is made in many derivations
of estimators and variances: whether an object is
detected is independent of whether any other object
is detected. Point estimates of D are robust to
violations of the assumption of independence, and
robust variance estimates are obtained by taking the
line to be the sampling unit, either by bootstrapping
on lines, or by calculating a weighted sample variance
of encounter rates by line.

It is also important that the detection function
has a “shoulder”; that is, the probability of detection
remains at or close to one initially as distance
from the line increases from zero. This is not an
assumption, but a property that allows more reliable
estimation of object density.

Given the above, and assuming a suitably flexible
method for estimating g(x), the point and interval
estimates of D are extremely robust to variation in
g(x) due to other factors such as observer, habi-
tat, weather, and so on. This very useful property
of standard distance sampling methods is known
as pooling robustness [1, 3], and is not shared by
capture–recapture methods, which are intrinsically
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Distance sampling 5

nonrobust to unmodeled variation in detectabil-
ity [18]. Large variations in density over the study
area are also not a problem although if areas of differ-
ing density can be defined in advance and then strat-
ification of survey effort should be used to increase
precision.

Point-transect Sampling

In point-transect sampling, an observer visits a num-
ber of points, the locations of which are determined
by some (systematic) random design. The method is
usually (but not exclusively) used for songbird popu-
lations, in which typically many species are recorded
and most detections are aural. By recording from
points, the observer can concentrate on detecting the
objects of interest, without having to navigate along a
line, and without having to negotiate a randomly posi-
tioned line through possibly difficult terrain. The prin-
cipal disadvantages are that detections made while
traveling from one point to the next are not utilized, a
problem especially for scarce species, and the method
is unsuited to species that are generally detected by
flushing them, or to species that typically change their
location appreciably over the time period of the count
(see below). An increasing application is in passive
acoustic density estimation of cetaceans (and other
taxa) from fixed locations, where recording devices
may be left at a sample of sites for long time periods.

Estimation

Detection distances r are measured from the point to
each detected object. Suppose the design comprises
k points, and distances less than or equal to w

are recorded. Then the surveyed area is a = kπw2,
within which n objects are detected. As for line-
transect sampling, denote the probability that an
object within the surveyed area a is detected by Pa

with estimate P̂a. Then, we estimate the object density
D by

D̂ = n

kπw2P̂a

(8)

We now define the detection function g(r) to be
the probability that an object at distance r from the
point is detected, and we again assume that g(0) = 1.
For line transects, the area of an incremental strip at
distance x from the lines is L dx, independent of
x, which leads to the result that the pdf of distances

g(r)

f (r )

Freq
r

w
r

w
r

Freq

(a)

(b)

Figure 3 Histograms of detection distances from a
point-transect survey. In (a), each histogram frequency has
been scaled by dividing by the midpoint of the correspond-
ing group interval. Also shown are the corresponding fits of
the detection function [g(r) in (a)] and the pdf of detection
distances [f (r) in (b)]. (Source: Reproduced from Ref. 10.
© John Wiley & Sons, Ltd, 1998.)

differs from the detection function only in scale. By
contrast, an incremental annulus at distance r from
a point has area 2πr dr , proportional to r , so that
the pdf of detection distances is f (r) = 2πrg(r)/ν,
where ν = 2π

∫ w

0 rg(r)dr . The respective shapes of
the two functions g(r) and f (r) are illustrated in
Figure 3. If we define an effective radius ρ, analogous
to the effective strip width of line-transect sampling,
then ν = πρ2 is the effective area surveyed per point
(Figure 4). Hence,

D̂ = n

aP̂a

= n

kπw2πρ̂2/πw2 = n

kν̂
(9)

The area of the triangle in Figure 4 is ρ2f ′(0)/2,
where f ′(0) is the slope of f (r) at r = 0. Since this
is equal to the area under f (r), which is unity, it
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6 Distance sampling

r w
r

f(r)

Figure 4 The pdf of detection distances, f (r). The area
under the curve is unity by definition. Because the two
shaded areas are equal in size, the area of the trian-
gle, ρ2f ′(0)/2, is also unity. Hence ν = πρ2 = 2π/f ′(0).
(Source: Reproduced from Ref. 10. © John Wiley & Sons,
Ltd, 1998.)

follows that ν = πρ2 = 2π/f ′(0), and

D̂ = nf̂ ′(0)

2πk

We therefore need to model the pdf of detection
distances, and evaluate the slope of the fitted function
at r = 0. The software Distance does this using the
same set of models for the detection function as for
line-transect sampling.

Variance and Interval Estimation

The methods for variance and interval estimation for
line-transect sampling also apply to point transects
with minor modifications. The variance of n is usually
estimated from the sample variance in encounter rates
between points. However, point-transect surveys are
sometimes designed by defining a series of lines, as
if a line-transect survey is to be carried out, then
locating a series of points along each line. If the
distance between neighboring points on the same
line is smaller than the distance between neighboring
points on different lines, then the data for all points on
the same line should be pooled and the variance of
n estimated from the sample variance in encounter
rates between lines, weighted by the number of
points on each line. Similarly, in this situation,
bootstrap variance estimates should be calculated
by resampling lines with replacement, rather than
individual points.

Assumptions

Assumptions are virtually unchanged from those
for line-transect sampling. As there, the standard
analyses are very robust to failure of the assumption
of independent detections. Point-transect sampling
is, however, more subject to bias than line-transect
sampling when objects move through the area around
a point. In principle, we try to obtain a snapshot,
locating each object at the position it occupied at
one instant in time. However, the count is not
instantaneous, because the observer needs time to
detect all objects close to that point. If, during
that time, movement brings new objects into the
neighborhood of the point, then object density will
be overestimated. To minimize bias, we recommend
that the amount of time spent at the point before and
after the snapshot instant be fixed in advance, and be
as small as possible, given the requirement to detect
all objects close to the point. An alternative approach
is to use a cue counting method (see the section titled
Related Methods), where the object counted is an
instantaneous cue such as a bird song. Point-transect
methods are used to estimate the density of cues
(i.e., bird songs per unit area and time), and this
is converted to animal density by dividing by an
estimate of cue rate, obtained separately. The relative
merits of these and other methods for songbirds are
considered in Ref. 19.

Related Methods

Trapping webs [1] and trapping line transects [3] pro-
vide an alternative to traditional capture–recapture
sampling for estimating animal density. In these, traps
are placed along lines radiating from randomly cho-
sen points (trapping webs) or with declining density
either side of randomly chosen lines (trapping line
transects), and the distances of trapped animals from
the points or lines are used to estimate a distance
sampling detection function. However, these meth-
ods suffer a number of potential biases [3], and have
been largely superseded by spatially explicit cap-
ture–recapture.

Cue counting [20] was developed as an alternative
to line-transect sampling for estimating whale abun-
dance from sighting surveys. Observers on a ship or
aircraft record all sighting cues within a sector ahead
of the platform and their distance from the platform.
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Distance sampling 7

The cue used depends on species, but might be the
blow of a whale at the surface. The sighting distances
are converted into the estimated number of cues per
unit time per unit area using a point-transect modeling
framework. The cue rate is estimated from separate
studies, in which individual animals or clusters are
monitored over a period of time. Cue counting has
also been used in passive acoustic point-transect sur-
veys of songbirds [19] and whales [21].

Indirect methods are often used when the animals
are rare, cryptic, or tend to move away before
being detected. Instead of counting the animals,
the objects counted are something produced by the
animals, for example, animal dung (e.g., deer [22]
or elephant [23]) or nests (e.g., great apes [23, 24]).
To convert object density to animal density, one
must then estimate two further parameters: object
production rate and object disappearance rate, from
separate studies.

Distance sampling can be viewed as a quadrat-
based method where detection within the sampled
quadrats is not assumed certain, and auxiliary infor-
mation, the distances, is gathered and used to estimate
detection probability. In some cases, it may be better
(or more feasible) to estimate detection probabil-
ity from other sources. An example is a trapping
point transect, where an auxiliary survey is used
to determine the detection function for traps set at
known distances from radiotracked small mammals;
this function is then used to estimate the effective area
surveyed by a grid of traps in a main survey that cov-
ers the study area [25]. Similar methods have been
used to estimate a passive acoustic detection function
for cetaceans, using a sample of animals at known
locations [26, 27]. A related method, used when ani-
mals can be lured in, for example, using a playback,
is the lure point transect [28]. At the extreme, mod-
els based on theoretical considerations could be used
to predict detectability, as with Ref. 29 for passive
acoustic density estimation of sperm whales; how-
ever, this is clearly a method of last resort.

Related techniques sometimes used by botanists
to estimate densities (and sometimes also termed
distance sampling) are nearest-neighbor methods
and point-to-nearest object methods [30]. These
approaches do not involve modeling the detection
function, and so are outside the definition of distance
sampling used here.

Extensions to Standard Methods

The basic theory of distance sampling is now well
established, as are the standard estimation and field
methods [1]. More recent research (e.g., Ref. 3) has
focused on methods for increasing precision and
relaxing the assumptions of the standard methods, and
on advanced design issues.

Multiple Covariate Distance Sampling

Generally, probability of detection is a function of
many factors other than distance of the object from
the line or point. We have considered briefly one
other factor, cluster size, because if we do not allow
for size bias in detection when objects occur in
clusters, then our object density estimator may be
biased. Other sources of heterogeneity contribute
little to bias, provided g(0) = 1. Nevertheless, higher
precision might be anticipated if additional covariates
are recorded and their effects on g(x) modeled. One
approach, first used by Ref. 31, is to allow covariates
to affect the scale of the detection function but
not its shape. Building on this work, extensions to
thedetection function estimation methods outlined in
the section on line-transect sampling above allow the
scale parameter of the key function to be a function of
covariates [3, 32]. See also Ref. 33 for an accessible
guide to these extensions.

Mark–recapture Distance Sampling

In some surveys, detection on the transect line is
not certain (g(0)<1), either because observers miss
potentially detectable animals because of environ-
mental conditions, fatigue, and so on (perception
bias), or because animals are unavailable for detec-
tion, for example, because they are underground or
underwater (availability bias), or both.

In the case of perception bias, capture–recapture
methods may be combined with distance sampling,
through the use of two observation platforms [3, 34].
The platforms might be treated as mutually indepen-
dent so that, provided that animals detected by both
platforms (duplicate detections) can be identified,
two-sample capture–recapture methods that incorpo-
rate covariates can be used. Bias in such methods
is typically large enough to be of concern unless
heterogeneity in detectability is well modeled. How-
ever, it is seldom possible to record covariates that
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8 Distance sampling

reflect this heterogeneity adequately. For example, if
a whale produces a blow that is particularly visible
from one platform, due to light conditions or some
other factor in the environment that is difficult to mea-
sure, then it will tend to be more visible from the
other platform too, and abundance will be underesti-
mated. These problems may be reduced by separating
the areas of search for the two platforms, and using
one to set up trials for the other. Various analytic
approaches are also potentially available [35]. The
resulting binary data may then be modeled using
logistic regression [36]. In some studies, the platform
that sets up the trials could be provided, for example,
by a radiotagging study, where locations of ani-
mals are known, or by an underwater acoustic array
(so long as species could be identified accurately).
In double-platform methods, Horvitz–Thompson-like
estimators are used to estimate density, given the esti-
mated probability of detection for each observation
(see Sampling, environmental). All of the above
work has taken place in the context of line transects,
but similar methods for point transects are also avail-
able [37].

When animals are not available for detection by
either platform, the above methods cannot correct for
all the bias. Separate estimates of availability can be
included in the analysis; alternatively the availability
process can be modeled (e.g., Refs 38, 39).

Density Surface Modeling

The standard framework invokes properties of the
sampling design to scale up from density in the
surveyed transects to density in the study area.
However, it may be advantageous to use model-
based methods for this stage instead, particularly
methods where spatially indexed covariates are used
and hence a spatial density surface model is fitted.
First, a model-based approach allows data collected
from nonrandom surveys (platforms of opportunity)
to be used; second, animal density may be related
to habitat and environmental variables, potentially
increasing precision and improving understanding of
factors affecting abundance; third, abundance may be
estimated for any subregion of interest, by integrating
under the fitted spatial density surface; and last, for
study areas that are small relative to the width of the
transects, there may be information gain by jointly
modeling detection probability and spatial variation
in density.

One approach [40] is to conceptualize the dis-
tribution of animals as an inhomogeneous Poisson
process, in which the detection function represents a
thinning process. Joint modeling of detectability and
density is possible (e.g., Refs 41–43), but in many
cases the study area is large compared with the tran-
sect width, and there seems little loss in modeling
detectability first using the observed distances, and
then density variation over the study area conditional
on the estimated detection function [3, 40]. Issues
exist such as adequately modeling local small-scale
density hotspots [44] and dealing with complex spa-
tial topography [45].

Bayesian approaches to density surface modeling
have been implemented [46, 47].

Other Extensions

Adaptive sampling [48] (see Adaptive designs)
offers a means of increasing sample size, and hence
increasing precision, by concentrating survey effort
where most observations occur. Standard adaptive
sampling methods can readily be extended to distance
sampling surveys [48]. A major practical problem of
adaptive sampling is that the required survey effort is
not known in advance. Methods have been developed
for line-transect sampling to allow a fixed total effort,
using a variable adaptation rule [49]. An experimen-
tal trial on a survey of harbor porpoise in the Gulf
of Maine yielded substantially more detections and
somewhat better precision than did conventional line-
transect sampling [49].

Distance sampling surveys are sometimes used
as part of an experimental design, for example, to
compare density between control and treatment plots.
Methods have been developed for such situations,
which allow for the dependence between sample units
when parameters of the detection function are shared
between units [50].

Nonrandom placement of samplers requires the
use of density surface models for encounter rate, cov-
ered above. However, another potential consequence
of not using random locations is that the density of
objects with respect to distance from the line or point
is not necessarily the standard form, and hence, the
distribution of observed distances cannot be assumed
to tell us directly about detectability. Other auxiliary
sources of information about nonstandard density gra-
dients can, however, be incorporated, as demonstrated
by Refs. 15, 51 and 52.
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Another assumption of the standard methods is
that distances are measured without error. However,
if there are errors, but information is available about
their form, this can potentially be incorporated in
estimation [15, 16, 53].

Although the standard methods are firmly estab-
lished and perform well in many circumstances, there
are still situations where neither they, nor the exten-
sions above, are satisfactory. There is much research
underway, and much left to be done, and hence the
subject of distance sampling is still a lively one for
statistics and ecology.
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