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Summary 
We used a Bayesian state space modelling 
framework to fit and compare models of British 
grey seal population dynamics using regional 
estimates of pup production from 1984 to 2004.  
The models allow for a number of different 
forms of density dependence in either pup 
survival or fecundity, as well as fitness-
dependent movement of recruiting females 
between regions. There was little difference 
between models in the adjusted posterior log-
likelihoods, meaning that none of the models 
was obviously best at describing the data.  
However, this could be a result of the fitting 
methods used.  The estimated adult population 
size in 2004 varied from 105,000 (95% CI 78-
141,000) for the simplest density-dependent 
survival model to 234,000 (95% CI 167-
344,000) for the simplest density-dependent 
fecundity model, the other models having 
intermediate estimates. 
  
The estimates of adult survival and pup 
production at carrying capacity were relatively 
insensitive to the prior distributions that we 
chose. However, estimates of juvenile survival, 
fecundity and movement were almost completely 
determined by their priors. 
 
Reducing the frequency of pup production 
estimates to one every second year had little 
effect on the posterior mean estimates of 
population size and model parameters, but the 
variance of the estimates of population size 
increased as did the sensitivity of the parameters 
to their prior distributions.   
 
Including a fabricated independent estimate of 
population size in 2004 for each region enhanced 
our ability to distinguish between the models.  
We discuss how such an actual estimate of this 
variable might be obtained. 
 
Introduction 
In this paper, we expand on the methodology 
that has been used to estimate the size of the grey 

seal population associated with those UK 
colonies that are surveyed each year by SMRU 
(Thomas and Harwood 2003, 2004). The 
underlying models are formulated in a state-
space framework (Buckland et al. 2004, Thomas 
et al. 2005, Newman et al. in press).  A state-
space model is composed of a state process, 
which models the true but unknown state of the 
population (i.e., the number of animals in each 
age group and region in each time period), and 
an observation process, which models how the 
survey data are generated given the true states.    
 
Previous versions of this model have used a 
simple Beverton-Holt function to describe the 
relationship between pup survival or fecundity 
and population size. This function predicts that 
most of the changes in these parameters occur at 
population sizes well below carrying capacity, 
whereas the conventional wisdom is that, for 
large vertebrates, these changes are unlikely to 
occur until the population is close to its carrying 
capacity.  To capture this we used an extended 
version of the Beverton-Holt function, first 
suggested by Shepherd (1982), which has similar 
properties to the generalised logistic function.  
We refer to this as “extended density 
dependence”.  
 
We used an analytic approach to investigate the 
sensitivity of the posterior parameter estimates to 
the priors that we used, and we examined the 
effects of reduced survey effort by removing 
every other year of data from the time series we 
analysed..   
 
Materials and Methods 
Models 
We compared models that incorporate density 
dependent pup survival (DDS) with models 
incorporating density dependent fecundity 
(DDF).  The basic DDS model is identical to that 
presented previously (Thomas and Harwood 
2003, 2004), while the basic DDF model is a 
slight modification of that presented by Thomas 
and Harwood (2004).  Both basic models were 
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also extended (EDDS and EDDF) to include an 
extra parameter governing the relationship 
between density dependence and population size.   
 
In constructing the state processes, we divide the 
seal population in each region into 7 age classes: 
pups (age 0), age 1 – age 5 adult females (pre-
breeding), and age 6 and older females.  Note 
that our models do not include adult males.   
 
The time step for the process models is 1 year, 
beginning just after the breeding season.  The 
models are made up of four sub-processes: 
survival, age incrementation, movement of 
recruiting females and breeding. 
 
Survival is modelled as a binomial random 
process.  For the DDS model, we assume that 
pup survival follows a Beverton-Holt function of 
the form:  
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where 1,,0 −trn  is the number of pups born in 
region r in year t-1, trp ,,φ  is survival rate of 
these pups, maxpφ  is maximum pup survival 
rate, and rβ/1  is proportional to the carrying 
capacity of the region.  The EDDS model 
includes an extra parameter, ρ , that can alter the 
shape of the relationship between pup survival 
and pup numbers: 

( )ρβ

φ
φ

1,,0

max
,,

1 −+
=

trr

p
trp

n
 (1) 

Figure 1 shows the effect of different levels of 
ρ .  For the DDF and EDDF models, we assume 
pup survival is constant across regions and times, 
i.e., ptrp φφ =,, . 
 
Since half of the pups born will be male, the 
expected number of female pups surviving in 
both models will be 0.5 1,,0,, −trtrp nφ .  For all 
models, we assume that adult female survival 
rate, aφ  is constant across regions and time. 
 
Age incrementation is deterministic – all seals 
age by one year (although those in the age 6+ 
category remain there). 
 
To model movement, we assume that only 
females breeding for the first time may move 
from their natal region. Once a female has started 
breeding she remains faithful to that region. We 

assume that movement is fitness dependent 
(Ruxton and Rohani 1998), such that females 
will only move if the value of the density 
dependent parameter (pup survival or fecundity) 
is higher elsewhere, and the probability of 
movement is proportional to the difference in the 
density dependent parameter between regions.  
In addition, we assume that females are more 
likely to move among regions that are close 
together, and that females show some degree of 
site fidelity – that is, they may not move even if 
conditions for their offspring will be better 
elsewhere. We model movement from each 
region as a multinomial random variable where 
probability of movement from region r to region 
i at time t is: 
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where Ii=r is an indicator that is 1 when i=r and 0 
otherwise, and  
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where sfγ , ddγ , and distγ  are three movement 
parameters that index the strength of the site 
fidelity, density dependence and distance effects 
respectively, , ,i r tΔ  is the difference in the density 
dependent parameter between regions i and r  
(see below), and ,r id  is the 20% trimmed mean 
of the distances between colonies in regions r 
and those in region i (standardized so that the 
largest distance is 1.0).  For the DDS and EDDS 
models,  

, , , , , ,i r t p i t p r tφ φΔ = −  
while for the DDF and EDDF models,  

, , , ,i r t i t r tα αΔ = −  
where ,r tα  is the fecundity rate in region r at 
time t, as defined below. 
 
We model breeding by assuming that the number 
of pups produced is a binomial random variable, 
with rate ,r tα . For the DDS and EDDS models, 
we assume this value is constant across regions 
and times, i.e., ,r tα α= .  For the DDF model, we 
assume this value follows a Beverton-Holt 
function of the form: 
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This implies that the probability of a female 
breeding in a particular year is influenced by the 
number of age 6+ females in that year.  Note that 
this is slightly different from the DDF model of 
Thomas and Harwood (2004), in which 
fecundity was a function of the number of pups 
in the previous breeding season.  This resulted in 
increasing oscillations in pup production under 
some parameter combinations (there is some 
evidence of this in the upper confidence limit for 
the DDF model in Figure 2 of that paper).  A 
viable alternative would be to model breeding 
probability as a function of the number of age 6+ 
females in the previous year.  The EDDF model 
is similar, with 
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For the observation process, we assume that pup 
production estimates follow a normal 
distribution with a constant coefficient of 
variation (CV) which we assume to be a known 
value.  In the runs reported here, we fixed this 
CV at 25%. 
 
In summary, the DDS and DDF models have 10 
parameters.  They share 8: adult survival aφ , one 
carrying capacity parameter-related parameter 
for each region 1β - 4β , and three movement 
parameters sfγ , ddγ , and distγ .  They differ in 
two parameters: the DDS model has maximum 
pup survival maxpφ  and constant fecundity α , 
while the DDF model has constant pup survival 

pφ  and maximum fecundity maxα .  The EDDS 
and EDDF models have one additional 
parameter, ρ , for the shape of the density-
dependent response. 
 
Data and Priors 
Our input data were the pup production estimates 
for 1984-2004 from Duck and Mackey (2005), 
aggregated into regions.  Unlike last year, we did 
not include the Helmsdale colony in the North 
Sea region as it was not surveyed in 2004, so our 
totals for the North Sea are slightly lower than 
those used last year. 
 
In previous years, we have used independent 
prior distributions on each parameter, but the 
introduction of the ρ  parameter makes this 
inadvisable.  Carrying capacity is strongly 

affected by ρ  (Figure 1), so a prior on the 
carrying capacity parameters β  that would be 
reasonable at one level of ρ  would be 
unfeasible at a different ρ .  Hence, instead of 
setting priors on the β s independently of the 
values of the other parameters, we used a re-
parameterization to set priors on the numbers of 
pups at carrying capacity in each region and then 
generated values for the β s conditional on the 
realized values of ρ  and the other model 
parameters.  We denote the number of pups at 
carrying capacity in region r as rχ . For the 
EDDS model, it can be shown that  
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(values of rβ <0 are set to 0).  Similarly, for the 
EDDF model,  
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where ( )aap φφφτ −= 15.0 5 .  For the DDS and 
DDF models, the formulae are the same, except 
that 1=ρ . 
 
Prior distributions for each parameter are given 
in Table 1, and are shown on Figures 3 and 5.   
 
Table 1. Prior parameter distributions  

Param Distribution Mean Stdev 
aφ  Be(22.05,1.15) 0.95 0.04 

maxpφ , pφ  Be(14.53,6.23) 0.7 0.1 

1χ  Ga(4,2500) 10000 5000 

2χ  Ga(4,1250) 5000 2500 

3χ  Ga(4,3750) 15000 7500 

4χ  Ga(4,10000) 40000 20000 
ρ  Ga(4,2.5) 10 5 

sfγ  Ga(2.25,1.33) 0.5 0.33 

ddγ  Ga(2.25,0.49) 3 2 

distγ  Ga(2.25,0.22) ln(3) ln(2) 
α , maxα  Be(22.05,1.15) 0.95 0.04 

 
Prior distributions for the states in the DDS and 
EDDS models were generated using the priors 
for the parameters in conjunction with the 1984 
data, as described by Thomas et al. (2005).  Prior 
states for the DDF and EDDF model were 
generated in a similar manner, except that the 
number of age 6+ females was sampled from a 
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Poisson distribution, with mean equal to the 
solution of the equation 
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for 0,,6 rn +  given the other values.  This can lead 
to unfeasibly large or small values for the mean, 
so values were bounded by 0,,0 rn  as a lower 
bound and ( )aarn φφ −10,,5  as an upper bound. 
 
 
Fitting Method 
We used the same particle filtering algorithm as 
described in Thomas and Harwood (2004), 
although the algorithm has now been ported 
from SPlus to C, enabling far larger runs to be 
undertaken.  Particle filtering (also called 
sequential importance sampling or SIS) is a 
computer-intensive method for estimating the 
posterior distribution of the parameters and states 
of a state-space model.  It is well suited to the 
analysis of time series data, as data points are 
introduced one year at a time into the algorithm, 
making it potentially more efficient than other 
computer-intensive techniques such as Markov 
chain Monte Carlo (MCMC).  Particle filtering 
methods were first developed for engineering 
applications and have only recently been applied 
to biological problems. Consequently, much 
methodological work is still required.  An 
introduction to particle filtering algorithms in the 
context of wildlife studies is given by Newman 
et al. (in press), and a detailed description of a 
similar algorithm to the one used here, applied to 
a similar model of seals, is given by Thomas et 
al. (2005).  The differences between the 
algorithm of Thomas et al. (2005) and the one 
used here are outlined by Thomas and Harwood 
(2004). 
 
Model outputs and comparison 
The output from a particle filter is a set of 
weighted samples (particles) taken from the prior 
distributions on the parameters and states and 
projected forward stochastically through the time 
series.  The weights relate to the manner in 
which the particles were sampled, how they were 
projected forward and the likelihood of the 
observed pup production given the simulated pup 
numbers.  We can use these particles to estimate 
quantities of interest such as posterior means or 
credibility (confidence) intervals on parameters 
and states.  One issue that arises is the accuracy 
of the estimates, in terms of Monte-Carlo error.  

We can calculate the effective sample size of the 
particles as  

 
( )[ ]2CV1
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where K is the number of particles and CV(w) is 
the coefficient of variation of the weights of 
these particles.  Our aim was to simulate enough 
particles to achieve an ESS of at least 1000, 
although that was not possible for some models 
in the time available.  We report ESS achieved in 
the Results section. 
 
For all four models, we present posterior 
estimates of the model parameters and estimated 
pup production from 1984-2004.  The models 
also estimate adult female numbers, but do not 
include adult males.  We therefore calculated 
total pre-breeding population sizes by assuming 
that the number of adult males is 73% of the 
number of adult females (Hiby and Duck, 
unpublished). 
 
To compare the models, we calculated the mean 
posterior Akaike Information Criterion (MPAIC) 
using the same method as Thomas and Harwood 
(2003, 2004).  This criterion is a form of 
penalized likelihood, which recognizes the fact 
that models with more parameters are expected 
to fit better a priori by adding a penalty 
proportional to the number of model parameters.  
It is similar in spirit to the Bayesian Deviance 
Information Criterion (Spiegelhalter et al. 2002).  
Models were compared using Akaike weights 
(Burnham and Anderson 1998, p124), which can 
be thought of in the Bayesian context as the 
posterior probability of each model being the 
best approximating model. 
 
Sensitivity to priors 
Since we used informative prior distributions on 
the parameters, it is of interest to determine how 
sensitive our results are to the choice of prior.  
We used the methods developed by Millar 
(2004) and implemented by Newman (2005, 
pers. comm..) to determine local sensitivity – 
that is sensitivity of results to changes in the 
hyperparameters of the prior distributions (as 
opposed to changes in the choice of distribution, 
for example).  Specifically, we estimated the 
sensitivity of the posterior mean of each 
parameter with respect to changes in the two 
hyperparameters that specify the prior, by 
estimating 
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from the sample of particles, where [ ]yE |θ  is 
the posterior expected value of the parameter 
(i.e., the expected value given the data y), [ ]θE  
is the prior value of the parameter, ai is the value 
of hyperparameter i (i = 1, 2), and dydx  
indicates the first differential of x with respect to 
y.  Despite the complex-seeming formulation, the 
output has a nice interpretation: it is a measure of 
the relative contribution to the posterior coming 
from the data and prior (see Results) . 
 
Effect of reduced survey effort 
We investigated the effect of reducing the 
frequency of pup production estimates by re-
fitting using only every second year of data.  
Since our fitting algorithm makes use of the first 
year of data to set priors on the states, and the 
second year to implement an efficiency-
enhancing method called rejection control 
(Thomas and Harwood 2004), we retained both 
1984 and 1985 data, the first “missing” data 
point being 1986. 
 
Effect of an independent estimate of adult 
population size 
We investigated the effect of obtaining an 
independent estimate of the adult population size 
on our ability to distinguish between the models 
by re-calculating the particle weights for each 
model, after including one additional piece of 
data: regional estimates of adult female 
population size in 2004 (which we assumed to 
have a CV of 25%).  The value we used for these 
“fabricated” data was the posterior mean 
estimates of adult population size from the DDF 
model (which was the model with the lowest 
posterior AIC value – see Results).  Based on 
these additional data, we re-calculated the 
particle weights, and then the posterior AIC and 
Akiake weights. 
 
Results 
Effective sample size (ESS) 
For some models, an extremely large number of 
particles were required to achieve a unit increase 
in ESS (Table 2).  The worst was the EDDF 
model where 222.2x104 particles were required 
for each unit of ESS.  Hence we did not achieve 
our target of ESS ≥ 1000 for all models (Table 
2).  Nevertheless, the Monte-Carlo error in our 
results is likely to be small.  For example, 
dividing the particles from the EDDF model into 
two, estimated mean adult population size in 
1984 is 64.3x104 from the first half and 64.2x104 
from the second. 

Table 2. Number of particles (K) and effective 
sample size (ESS) for the results presented here.  
Note that number of particles is before rejection 
control, ESS is afterwards (see Thomas and 
Harwood 2004 for details). 
Model K 

(x106) 
ESS ESS/K 

(x104) 
All data 
DDS 60 795 7.5 
EDDS 424 514 82.4 
DDF 160 1034 15.4 
EDDF 614 276 222.4 
Alternate years removed 
DDS 60 12103 0.5 
EDDS 60 2230 2.6 
DDF 60 8275 0.7 
EDDF 32 906 3.5 
 
Comparison of models for density dependence 
Smoothed posterior estimates of pup production 
(Thomas et al. 2005) for the four models are 
shown in Figure 2.  The estimates are very 
similar, and there is little difference in posterior 
likelihood or AIC between the models (Table 2).  
The model with the minimum AIC is the DDF 
model, but the next best model (EDDS) has a 
mean posterior AIC only 1.57 higher.  All four 
models are within 3 AIC points of one another.   
 
Subjectively, the extended density dependence 
models appear to do a better job of capturing the 
recent levelling-off of pup production in the 
Inner and Outer Hebrides. However none of the 
models’ estimates can reproduce the rapid 
increase in pup production in the Hebrides and 
Orkney in the early 1990s.   
 
Although the models produce similar estimates 
of pup production, they give substantially 
different estimates of total predicted population 
size (Table 3 and Appendix 1).  The DDF model 
estimates that there are 2.25 times as many seals 
as the DDS model, with the other two falling in 
between. 
 
Table 2. Mean posterior log-likelihood, AIC  and 
Akaike weights for models fit to data from 1984-
2004. 
Model LnL AIC ΔAIC Akaike 

weight 
DDS -685.08 1390.16 1.91 0.19 
EDDS -683.91 1389.82 1.57 0.22 
DDF -684.12 1388.25 0.00 0.48 
EDDF -684.59 1391.20 2.95 0.11 
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Table 3. Estimated size, in thousands, of the 
British grey seal population at the start of the 
2004 breeding season, derived from models fit to 
data from 1984-2004.  Numbers are posterior 
means with 95% credibility intervals in brackets. 
 DDS EDDS 
North sea 11.6 

(8.9-15.8) 
17.0

(9.5-24.8) 
Inner 
Hebrides 

8.9 
(6.8-11.6) 

10.6
(6.8-14.5) 

Outer 
Hebrides 

32.7 
(24.0-44.2) 

41.8
(27.0-57.4) 

Orkney 51.5 
(38.6-69.8) 

74.5
(45.7-94.4) 

Total 104.7 
(78.3-141.4) 

143.5
(89.0-191.1) 

 DDF EDDF 
North sea 25.3 

(18.5-36.1) 
20.4

(15.6-26.6) 
Inner 
Hebrides 

21.4 
(15.1-32.3) 

14.6
(11.3-20.0) 

Outer 
Hebrides 

84.9 
(58.7-131.5) 

57.5
(43.9-77.3) 

Orkney 102.5 
(75.3-144.4) 

78.7
(61.8-101.5) 

Total 234.1 
(167.6-344.2) 

171.1
(132.5-225.4) 

 
Posterior parameter estimates for the models are 
given in Figure 3. For the DDS and DDF 
models, the posterior mean adult survival ( aφ )  is 
similar to the prior of 0.95 (although the variance 
is much reduced), but it is substantially lower in 
the extended density dependence models (0.91 in 
EDDS and 0.90 in EDDF).  The juvenile survival 
and fecundity parameters ( jφ  and α ) are almost 
unchanged relative to the prior in all four 
models.  Similarly, the movement parameters 
(γ s) are also little changed, except for the 
density dependence parameter ddγ , which has a 
posterior mean that is half the prior mean in the 
DDS and DDF models.  Posterior distributions of 
the carrying capacity parameters ( χ s) are 
somewhat tighter than the priors, with posterior 
mean estimates that vary between models.  In the 
extended density dependence models, the 
posterior for ρ  has lower mean and variance 
than the prior – in particular for the EDDF 
model, where the prior mean of 10 is outside the 
95% credibility interval of the posterior. 
 
Sensitivity to priors 
Results for the four models are shown in Table 4.  
The sensitivity values can be interpreted as a 

measure of the relative contribution to the 
posterior coming from the data and the prior: low 
values mean there is a strong influence of the 
data while high values mean there is a strong 
influence of the prior.  Millar (2004) has 
suggested a quantitative interpretation of these 
sensitivities: for example the value of 0.15 for 
hyperparameter 1 of aφ  in the DDS model means 
that the posterior mean of aφ  is influenced 15% 
by the prior value of this hyperparameter (which 
is 22.05) and 85% by the data.  However, it is 
unclear how sensitivities of greater than 1 can be 
interpreted in this way.  
 
Table 4. Sensitivity of the posterior mean of each 
parameter to changes in the two 
hyperparameters that specify the prior on that 
parameter, under four models of British grey 
seal population dynamics fit to pup production 
data from 1984-2004. 

 1 2 1 2 
 DDS EDDS 
aφ  0.15 0.16 0.23 0.19 

maxpφ , pφ  0.73 0.81 1.31 1.06 

1χ  0.19 0.21 0.62 0.61 

2χ  0.16 0.22 0.15 0.13 

3χ  0.27 0.42 0.18 0.20 

4χ  0.32 0.47 0.75 0.94 
ρ  - - 0.66 0.42 

sfγ  0.86 1.25 1.05 1.29 

ddγ  0.68 0.34 1.14 0.92 

distγ  1.21 1.67 1.26 1.84 
α , maxα  0.83 0.95 1.26 1.07 

 DDF EDDF 
aφ  0.25 0.31 0.13 0.08 

maxpφ , pφ  1.07 0.98 1.04 0.94 

1χ  0.19 0.16 0.64 0.63 

2χ  0.14 0.16 0.23 0.18 

3χ  0.21 0.29 0.30 0.30 

4χ  0.49 0.57 0.70 0.84 
ρ  - - 0.43 0.21 

sfγ  0.83 1.28 0.92 0.92 

ddγ  0.60 0.28 1.03 0.91 

distγ  1.27 1.84 1.04 1.24 
α , maxα  1.22 1.09 0.98 1.02 
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In general, the sensitivity values confirm the 
impressions gained from the plots of prior and 
posterior distributions (Figure 3): aφ  has low 
sensitivity, ρ  has reasonably low sensitivity 
(particularly for the EDDF model), the χ s have 
moderate sensitivity except for some parameters 
in some models (e.g., 4χ  in the EDDS and 
EDDF modes), and the other parameters have 
high sensitivity.  The jφ  and α  parameters are 
almost completely determined by their prior, as 
are the movement parameters, except for ddγ  in 
the DDS and DDF models. 
 
Effect of reduced survey effort 
Fitting the models with approximately half the 
data had relatively little effect on either the 
estimates of true pup production (Figure 4) or 
parameters (Figure 5), although the estimates of 
pup production had wider credibility intervals, 
particularly at the beginning and end of the time 
series, and the parameter estimates were 
generally closer to their prior distributions. 
 
DDF still had the lowest AIC, with the 
difference between that and the other models 
(especially EDDF) being slightly greater (Table 
5).  The predicted total population sizes for 2004 
(Table 6) were broadly similar to the estimates 
using the entire dataset (Table 3), but note that 
the values in Table 6 are predictions, not 
estimates, because the 2004 data were excluded.  
However, the posterior credibility intervals were 
noticeably wider. 
 
Table 5. Mean posterior log-likelihood, AIC  and 
Akaike weights for models fit to data from1984, 
1985, 1987, 1989, 1991, 1993, 1995, 1997, 1999, 
2001 and 2003. 
Model LnL AIC ΔAIC Akaike 

weight 
DDS -356.43 732.87 1.63 0.24 
EDDS -355.84 733.68 2.44 0.16 
DDF -355.62 731.24 0.00 0.55 
EDDF -357.28 736.56 5.32 0.04 
 
Sensitivities of the parameters were almost all 
greater (Table 7), indicating a stronger influence 
of the prior as would be expected with less data.  
For example, in the EDDS model, sensitivity of 
the two hyperparameters for the gamma prior on 
ρ  was 0.66 and 0.42 with the full dataset, but 
0.95 and 0.69 with the reduced dataset.  The 
posterior mean estimate of this parameter was 

6.24 with the whole dataset, but 7.23 with the 
reduced dataset – closer to the prior mean of 10. 
 
Table 6. Predicted size, in thousands, of the 
British grey seal population at the start of the 
2004 breeding season, derived from models fit to 
a subset of the data from 1984-2003 (see Table 5 
legend).  Numbers are posterior means with 95% 
credibility intervals in brackets. 
 DDS EDDS 
North sea 11.0 

(8.0-15.5) 
17.5

(8.7-27.3) 
Inner 
Hebrides 

8.8 
(6.4-12.1) 

11.4
(6.9-18.0) 

Outer 
Hebrides 

31.8 
(21.6-45.1) 

45.0
(26.8-69.7) 

Orkney 49.3 
(35.0-69.1) 

72.6
(40.2-99.8) 

Total 101 
(71.1-141.8) 

146.6
(82.6-214.8) 

 DDF EDDF 
North sea 25.3 

(17.2-38.6) 
19.8

(14.3-28.8) 
Inner 
Hebrides 

21.7 
(14.4-34.1) 

15.6
(11.0-22.7) 

Outer 
Hebrides 

82.5 
(54.2-140.2) 

62.3
(43.4-88.0) 

Orkney 104.7 
(71.1-157.3) 

74.3
(55.4-102.6) 

Total 237.2 
(156.9-370.2) 

172.1
(124.0-242.1) 

 
Effect of an independent estimate of adult 
population size 
Including an independent estimate of adult 
population size created a clear distinction 
between the models (Table 8), with the DDF 
model having 96% of the posterior Akiake 
weight, and the EDDF model (which had the 
closest adult population size estimates to the 
DDF model) having the remaining 4%. 
 
Discussion 
 
For the runs reported here, we fixed the CV of 
the pup production estimates at 25%.  This value 
is higher than the only available estimate (Hiby 
and Duck, unpublished) of 7% for individual 
colonies.  The effect of using a higher CV is to 
reduce the influence of the data on the posterior 
states and parameters, relative to the priors.  We 
therefore regard our results as preliminary, 
especially those regarding the sensitivity of the 
parameters to the priors and the comparison of 
models. 
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Table 7. Sensitivity of the posterior mean of each 
parameter to changes in the two 
hyperparameters that specify the prior on that 
parameter, under four models of British grey 
seal population dynamics fit to a subset of the 
data from 1984-2003 (see Table 5 legend). 

 1 2 1 2 
 DDS EDDS 
aφ  0.18 0.19 0.28 0.24 

maxpφ , pφ  0.77 0.85 1.26 1.04 

1χ  0.20 0.20 0.71 0.71 

2χ  0.22 0.31 0.25 0.25 

3χ  0.35 0.54 0.29 0.37 

4χ  0.37 0.49 0.77 0.93 
ρ  - - 0.95 0.69 

sfγ  0.90 1.25 1.00 1.14 

ddγ  0.74 0.48 1.01 0.88 

distγ  1.20 1.51 1.21 1.44 
α , maxα  0.84 0.91 1.21 1.06 

 DDF EDDF 
aφ  0.29 0.36 0.14 0.09 

maxpφ , pφ  1.15 1.01 1.15 1.02 

1χ  0.22 0.18 0.89 0.91 

2χ  0.19 0.21 0.58 0.57 

3χ  0.26 0.37 0.50 0.56 

4χ  0.50 0.55 0.79 0.89 
ρ  - - 1.19 0.89 

sfγ  0.87 1.24 1.03 1.04 

ddγ  0.72 0.42 1.06 1.02 

distγ  1.25 1.64 1.14 1.27 
α , maxα  1.29 1.12 1.15 1.04 

 
Table 8. Mean posterior log-likelihood, AIC  and 
Akaike weights for models fit to pup production 
data from 1984-2004 and fabricated regional 
estimates of adult female population size  in 
2004. 
Model LnL AIC ΔAIC Akaike 

weight 
DDS -690.57 1401.14 12.86 0.00 
EDDS -691.40 1404.80 16.52 0.00 
DDF -684.14 1388.28 0.00 0.96 
EDDF -686.40 1394.80 6.52 0.04 
 

We are actively working on improving the fitting 
methods.  The current algorithm is simple (and 
therefore reliable) but inefficient.  We expect to 
be able to improve efficiency, while at the same 
time maintaining reliability, using tools such as 
auxiliary particle filtering, simulated annealing 
and tempering, and limited kernel smoothing 
(Doucet et al. 2001, Lui 2001, Thomas et al. 
2005, Newman et al. in press).  We are also 
working with K. Newman, C. Fernandez and S. 
Buckland on a comparison of MCMC and 
particle filtering for a model similar to the DDS 
one (Newman et al. in prep).  Preliminary results 
indicate that judicious application of tools such 
as kernel smoothing can result in large gains in 
efficiency with little bias and that, in cases like 
this where there is relatively little information in 
the data relative to the priors, for some 
parameters, particle filtering appears to be more 
efficient than MCMC. 
 
Our results from the DDS model are comparable 
with those of Thomas and Harwood (2004), 
although the estimated total population sizes 
presented here are slightly higher for comparable 
years.  The difference is explained by the change 
in prior on the density dependence parameters.  
The priors on the β parameters used by Thomas 
and Harwood (2004) translate into expected 
numbers of pups at carrying capacity of 5000, 
3500, 14000 and 18000 for the North Sea, Inner 
Hebrides, Outer Hebrides and Orkneys 
respectively.  Here we used priors with higher 
means (the χ  parameters, Table 1: 10000, 5000, 
15000, 40000) because they seemed better 
justified.  In both cases, the prior distributions 
had large variances (coefficient of variation of 
50%) and the sensitivity of the posteriors to the 
prior values was not high – especially for the 
DDS model (Table 4) – so even a large change in 
the prior had only a small effect on the estimated 
adult population size. 
 
Our estimated total population sizes from the 
DDF model are substantially lower than those of 
Thomas and Harwood (2004), and much more 
plausible.  Thomas and Harwood noted a 
problem with oscillations in estimated pup 
production under their DDF model, and we have 
rectified that by making fecundity dependent on 
current 6+ female numbers rather than the 
previous years pup production.  The change 
appears also to have caused our estimates of 
population size to decrease. 
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The estimates of total population size from the 
new extended density dependence models are 
intermediate between the DDF and DDS models.  
Although our model selection criterion did not 
indicate that they provide a more parsimonious 
fit than the simple density dependence models 
after taking the additional parameter into 
account, the pup production trajectories 
correspond more closely to our biological 
understanding of the system.  The extended 
models may prove superior if a lower CV is used 
for the observation process 
 
None of the models we have used to date have 
provided an adequate fit to the rapid increase in 
pup production in the Inner and Outer Hebrides 
(and, to a lesser extent, in Orkney) observed in 
the early 1990s .  A rapid increase in one region 
could be a consequence of density dependent 
movement, but a rapid increase in three out of 
four cannot.  It may be fruitful to investigate the 
use of covariates such as food supply or climatic 
conditions that may influence fecundity or 
juvenile survival in a time-dependent manner. 
An EPSRC-funded PhD student will be 
investigating this over the next 3 years. 
 
Our analysis of prior sensitivity has been useful 
in supplementing the impressions gained by 
comparing prior and posterior parameter plots.  
This work can be extended in two ways.  Firstly, 
it would be more useful to estimate the 
sensitivity of the posterior parameter mean to 
variation in the prior mean (and its variance) 
rather than looking at sensitivity with respect to 
variation in the prior hyperparameters.  
Secondly, an important output of our modelling 
is the total population size estimate, and it would 
be useful to estimate sensitivity of this estimate 
to variation in the priors on the parameters.  We 
plan to do both of these. 
 
We found little evidence in the pup production 
estimates to support one model over another, 
although we acknowledge that this may be a 
result of the high CV used in the observation 
model.  Introducing a single estimate of adult 
population size was enough to enable us to 
unambiguously distinguish between the models.  
Clearly, a more comprehensive assessment will 
be required, but there may be merit in reducing 
the frequency of the pup production surveys in 
order to finance a new survey designed to 
estimate total population size. 
 

A total population survey would not be easy to 
achieve, but one possibility is to attach 
transponders to the flippers of a large sample of 
seals.  Signals from these seals could then be 
detected by an aeroplane-mounted receiver 
during subsequent pup production survey, 
allowing a mark-recapture estimate of population 
size.  It the ages of tagged seals could be 
determined at the time of marking, this would 
provide age-specific population estimates.  If a 
subsequent aerial survey was performed during 
the moult, a further estimate of population size 
could be obtained that included size of the male 
population.  However, the necessary tagging and 
receiving technology for such an exercise is not 
yet commercially available. It would also be 
important to determine a protocol for tagging 
seals that avoids any correlation between 
probability of marking and recapturing animals.  
An alternative approach for estimating 
population size is to combine estimates of 
numbers of seals hauled out during moult with 
estimates of the proportion hauled out.   Such an 
approach has its own set of problems.  
Nevertheless, consideration should be given to 
this and all other potential approaches. 
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Figure 1.  Relationship between pup survival ( pφ ) and number of pups (n0) at different levels of  ρ  in the 
extended density dependent survival (EDDS) model (formula 1 in text).  1=ρ  corresponds with the 
standard Beverton-Holt density dependent function.  The relationship between fecundity and number of 6+ 
females has the same shape in the extended density dependent fecundity (EDDF) model (formula 2). 
 
(a) Filled circles show the number of pups at carrying capacity at the given level of ρ (formula 3) with the 
other model parameters fixed ( 0005.0=β , 95.0=α , 7.0max =pφ , and 95.0=aα ).  
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(b) Labels show the level of β required for a fixed carrying capacity of 8000 (formula 3, 8000=χ , 

95.0=α , 7.0max =pφ , and 95.0=aα ).    
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Figure 2.  Estimates of true pup production from four models of grey seal population dynamics fit to pup 
production estimates from 1984-2004.  Input data are shown as circles, while the lines show the posterior 
mean bracketed by the 95% credibility interval. 
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Figure 3. Posterior parameter estimates (histograms) and priors (solid lines) from four models of grey seal 
population dynamics fit to pup production estimates from 1984-2004.  The vertical line shows the posterior 
mean,  its value is given in the title of each plot after the parameter name. 
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Figure 4.  Estimates of true pup production from four models of grey seal population dynamics, fit to pup 
production estimates from 1984, 1985, 1987, 1989, 1991, 1993, 1995, 1997, 1999, 2001 and 2003.  Input 
data are shown as filled circles and excluded data as empty circles.  Lines show the posterior mean 
bracketed by the 95% credibility interval. 
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Figure 5. Posterior parameter estimates (histograms) and priors (solid lines) from four models of grey seal 
population dynamics fit to pup production estimates from 1984, 1985, 1987, 1989, 1991, 1993, 1995, 1997, 
1999, 2001 and 2003.  The vertical line shows the posterior mean,  its value is given in the title of each plot 
after the parameter name. 
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(c) Density dependent fecundity (DDF) 
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(b) Extended density dependent survival (EDDS) 
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Appendix 
 
Estimates of total population size, in thousands, at the beginning of each breeding season from 1984-2004, 
made using four model of British grey seal population dynamics.  Numbers are posterior means followed 
by 95% credibility intervals in brackets. 
 
Density dependent survival model 
 
Year North Sea Inner Hebrides Outer Hebrides Orkneys Total 
1984 4.4 (3.4 5.8) 4.4 (3.1 6) 24.4 (19 32.7) 15.8 (12 20.9) 49 (37.5 65.3) 
1985 4.8 (3.8 6.1) 4.7 (3.6 6.2) 24.6 (19.5 32.4) 17.2 (13.5 22.2) 51.2 (40.3 66.8) 
1986 5.2 (4.2 6.5) 5 (3.9 6.4) 24.8 (19.9 32.4) 18.7 (15 23.6) 53.6 (43 68.8) 
1987 5.5 (4.5 6.9) 5.3 (4.2 6.7) 25.1 (20.2 32.7) 20.3 (16.5 25.5) 56.2 (45.5 71.8) 
1988 5.9 (4.8 7.4) 5.5 (4.4 7.1) 25.4 (20.5 32.8) 22 (17.9 27.3) 58.8 (47.7 74.5) 
1989 6.3 (5.1 7.8) 5.8 (4.7 7.3) 25.8 (20.8 33.1) 23.7 (19.3 29.1) 61.5 (50 77.3) 
1990 6.7 (5.4 8.3) 6 (4.9 7.7) 26.2 (21.1 33.4) 25.4 (20.8 31.5) 64.3 (52.2 80.8) 
1991 7 (5.7 8.8) 6.3 (5.1 8) 26.5 (21.3 33.7) 27.2 (22.3 33.7) 67.1 (54.4 84.1) 
1992 7.4 (6 9.3) 6.5 (5.2 8.3) 27 (21.6 34.2) 29 (23.7 35.9) 69.9 (56.5 87.7) 
1993 7.8 (6.3 9.8) 6.7 (5.4 8.5) 27.4 (21.8 34.9) 30.9 (25.1 38.4) 72.8 (58.5 91.5) 
1994 8.2 (6.6 10.3) 7 (5.5 8.8) 27.8 (22 35.5) 32.7 (26.4 40.7) 75.6 (60.5 95.4) 
1995 8.5 (6.8 10.8) 7.2 (5.7 9.1) 28.3 (22.1 36.4) 34.6 (27.8 43.5) 78.6 (62.5 99.8) 
1996 8.9 (7.1 11.3) 7.4 (5.8 9.4) 28.7 (22.3 37.2) 36.5 (29.1 46.1) 81.5 (64.4 104.1) 
1997 9.2 (7.3 11.9) 7.6 (6 9.7) 29.2 (22.6 38.2) 38.4 (30.4 49) 84.4 (66.2 108.9) 
1998 9.6 (7.6 12.5) 7.8 (6.1 10) 29.7 (22.8 38.9) 40.3 (31.7 52.1) 87.3 (68.1 113.4) 
1999 9.9 (7.8 13.1) 8 (6.2 10.2) 30.2 (22.9 39.9) 42.2 (32.9 54.9) 90.3 (69.8 118.1) 
2000 10.3 (8 13.6) 8.2 (6.3 10.5) 30.7 (23.2 40.9) 44.1 (34.1 57.8) 93.2 (71.6 122.8) 
2001 10.6 (8.2 14.2) 8.4 (6.5 10.8) 31.2 (23.4 41.8) 46 (35.3 60.6) 96.1 (73.3 127.3) 
2002 10.9 (8.5 14.7) 8.5 (6.6 11) 31.7 (23.6 42.7) 47.8 (36.4 63.7) 99 (75.1 132.1) 
2003 11.3 (8.7 15.3) 8.7 (6.7 11.3) 32.2 (23.8 43.4) 49.7 (37.5 66.7) 101.9 (76.7 136.7) 
2004 11.6 (8.9 15.8) 8.9 (6.8 11.6) 32.7 (24 44.2) 51.5 (38.6 69.8) 104.7 (78.3 141.4) 

 
Extended density dependent survival model 
 
Year North Sea Inner Hebrides Outer Hebrides Orkneys Total 
1984 5.3 (3.8 6.7) 5.4 (3.7 7.2) 28.7 (20 37.7) 21 (14.1 27.6) 60.4 (41.6 79.1) 
1985 5.6 (4.2 7) 5.8 (4.1 7.5) 29.8 (20.7 38.3) 22.1 (15.4 28.5) 63.2 (44.5 81.3) 
1986 5.9 (4.5 7.4) 6.1 (4.5 7.9) 30.9 (21.7 39.3) 23.3 (16.9 29.5) 66.3 (47.5 84.1) 
1987 6.3 (4.9 7.8) 6.5 (4.8 8.2) 32.1 (22.4 40.4) 24.7 (18.3 30.9) 69.7 (50.4 87.3) 
1988 6.8 (5.2 8.3) 7 (5.1 8.7) 33.2 (22.7 41.5) 26.3 (19.9 32.5) 73.3 (52.9 91) 
1989 7.2 (5.6 8.8) 7.5 (5.5 9.2) 34.3 (23.1 42.6) 28 (21.4 34.4) 77.1 (55.5 95) 
1990 7.7 (6 9.4) 7.9 (5.7 9.7) 35.4 (23.3 43.6) 29.9 (23.2 36.4) 80.9 (58.2 99.2) 
1991 8.3 (6.3 10.1) 8.4 (6 10.3) 36.3 (23.7 44.7) 31.8 (24.9 38.7) 84.8 (60.9 103.8) 
1992 8.9 (6.8 10.7) 8.8 (6.1 10.9) 37.2 (24.3 46) 33.9 (26.6 41.1) 88.8 (63.8 108.7) 
1993 9.5 (7.1 11.5) 9.2 (6.3 11.5) 38 (24.8 47) 36.2 (28.3 43.7) 92.8 (66.5 113.7) 
1994 10.2 (7.6 12.4) 9.5 (6.5 11.9) 38.7 (25.2 48.2) 38.6 (30.1 46.7) 97 (69.3 119.2) 
1995 10.9 (7.9 13.3) 9.8 (6.6 12.4) 39.3 (25.4 49.5) 41.3 (32.1 50) 101.2 (71.9 125.1) 
1996 11.6 (8.1 14.2) 10 (6.7 12.6) 39.8 (25.8 50.6) 44.2 (34.1 53.7) 105.5 (74.7 131.2) 
1997 12.4 (8.3 15.3) 10.1 (6.8 12.9) 40.2 (26.1 51.8) 47.3 (35.9 57.4) 109.9 (77.2 137.3) 
1998 13.2 (8.6 16.4) 10.2 (6.8 13.2) 40.5 (26.3 52.5) 50.6 (37.8 61.8) 114.4 (79.5 143.8) 
1999 13.9 (8.7 17.5) 10.3 (6.8 13.4) 40.7 (25.8 53.1) 54.2 (39.7 66.2) 119 (81 150.2) 
2000 14.6 (9 18.8) 10.3 (6.8 13.6) 40.9 (26.1 54) 57.9 (41.3 70.9) 123.7 (83.2 157.3) 
2001 15.2 (9.1 20.2) 10.4 (6.8 13.9) 41.2 (26.2 54.7) 61.8 (42.8 75.9) 128.6 (84.9 164.7) 
2002 15.9 (9.3 21.6) 10.4 (6.8 14) 41.4 (26.3 55.6) 65.9 (44.1 81.4) 133.6 (86.4 172.6) 
2003 16.5 (9.4 23.1) 10.5 (6.8 14.3) 41.6 (26.5 56.5) 70.2 (44.7 87.7) 138.7 (87.5 181.5) 
2004 17 (9.5 24.8) 10.6 (6.8 14.5) 41.8 (27 57.4) 74.5 (45.7 94.4) 143.9 (89 191.1) 
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Density dependent fecundity model 
 
Year North Sea Inner Hebrides Outer Hebrides Orkneys Total 
1984 5.7 (4.1 7.9) 6 (3.8 8.9) 40.1 (27.6 60.1) 18.2 (13.3 24.4) 70 (48.8 101.3) 
1985 6.2 (4.7 8.5) 6.6 (4.7 9.4) 41.4 (29.2 60.9) 20.1 (15.1 26.5) 74.4 (53.7 105.3) 
1986 6.9 (5.3 9.2) 7.4 (5.4 10) 43 (31.2 61.8) 22.3 (17.1 28.7) 79.6 (59 109.8) 
1987 7.7 (5.9 10.1) 8.1 (6.1 10.7) 44.8 (33.1 62.6) 24.8 (19.4 31.6) 85.3 (64.5 115.1) 
1988 8.4 (6.5 11) 8.9 (6.9 11.6) 46.6 (35 64.2) 27.5 (21.6 35.1) 91.4 (69.9 121.9) 
1989 9.3 (7.2 12) 9.6 (7.5 12.5) 48.5 (36.7 66.5) 30.5 (24 38.8) 97.9 (75.3 129.8) 
1990 10.1 (7.9 13.1) 10.4 (8.2 13.4) 50.4 (38.3 69) 33.7 (26.4 42.9) 104.6 (80.9 138.4) 
1991 11 (8.6 14.3) 11.2 (8.8 14.6) 52.4 (39.8 71.1) 37.1 (29.1 47.4) 111.7 (86.2 147.4) 
1992 11.9 (9.3 15.7) 11.9 (9.4 15.7) 54.5 (41.2 74.9) 40.7 (31.9 52.4) 119.1 (91.8 158.7) 
1993 12.9 (10.1 17) 12.7 (9.9 16.9) 56.6 (42.6 77.9) 44.6 (34.9 57.9) 126.9 (97.5 169.8) 
1994 13.9 (10.9 18.5) 13.5 (10.4 18.1) 58.9 (44.1 81.5) 48.8 (37.9 64.3) 135 (103.3 182.3) 
1995 14.9 (11.7 20.1) 14.2 (10.9 19.4) 61.2 (45.6 85.6) 53.2 (41.3 70.7) 143.5 (109.5 195.8) 
1996 16 (12.5 21.8) 15 (11.4 20.6) 63.6 (47.6 89.1) 57.8 (44.6 78.3) 152.4 (116.1 209.8) 
1997 17.1 (13.1 23.5) 15.8 (11.9 21.9) 66.1 (49.1 93.3) 62.6 (48 85.2) 161.6 (122.2 223.9) 
1998 18.2 (14 25.3) 16.6 (12.4 23.4) 68.6 (50.7 97.6) 67.7 (51.5 93.2) 171.1 (128.5 239.5) 
1999 19.3 (14.7 27.1) 17.4 (12.8 24.9) 71.1 (52.1 102.5) 73 (55 101.1) 180.9 (134.6 255.6) 
2000 20.5 (15.4 28.9) 18.2 (13.3 26.3) 73.8 (53.4 107.8) 78.6 (59 109.1) 191 (141.1 272.1) 
2001 21.6 (16.2 30.7) 19 (13.8 27.8) 76.5 (54.5 113.3) 84.3 (62.6 116.7) 201.4 (147 288.5) 
2002 22.8 (16.9 32.5) 19.8 (14.2 29.3) 79.2 (56.1 119.3) 90.2 (66.6 125.4) 212.1 (153.9 306.6) 
2003 24 (17.7 34.2) 20.6 (14.7 30.8) 82 (57.3 124.9) 96.3 (71 134.4) 222.9 (160.7 324.3) 
2004 25.3 (18.5 36.1) 21.4 (15.1 32.3) 84.9 (58.7 131.5) 102.5 (75.3 144.4) 234.1 (167.6 344.2) 
 
Extended density dependent fecundity model 
 
Year North Sea Inner Hebrides Outer Hebrides Orkneys Total 
1984 5.4 (3.9 7) 5.7 (4.1 7.8) 31.3 (22.7 43.1) 21.8 (16 28.8) 64.3 (46.8 86.8) 
1985 5.7 (4.2 7.4) 6.1 (4.6 8) 32.5 (24.1 44) 22.9 (17.6 29.6) 67.2 (50.5 89) 
1986 6.1 (4.6 7.8) 6.4 (5 8.5) 33.8 (25.5 45.2) 24.1 (19 30.8) 70.5 (54.1 92.3) 
1987 6.6 (5 8.3) 6.9 (5.5 8.9) 35.1 (27 46.2) 25.6 (20.6 32.4) 74.2 (58.1 95.9) 
1988 7.1 (5.4 8.9) 7.4 (5.9 9.5) 36.5 (28.4 47) 27.2 (22 34.2) 78.2 (61.7 99.5) 
1989 7.6 (5.8 9.5) 7.9 (6.4 10) 37.9 (29.8 48.4) 29 (23.5 36.1) 82.3 (65.5 104) 
1990 8.1 (6.3 10.3) 8.4 (6.8 10.5) 39.3 (31.2 50) 30.9 (25.2 38.4) 86.7 (69.4 109.3) 
1991 8.7 (6.7 11) 8.9 (7.2 11.2) 40.7 (32.5 51.5) 32.9 (26.9 40.5) 91.2 (73.3 114.2) 
1992 9.3 (7.1 11.8) 9.4 (7.6 11.7) 42.1 (33.8 52.8) 35 (28.8 42.6) 95.8 (77.3 118.8) 
1993 9.9 (7.6 12.6) 10 (8.1 12.3) 43.5 (35.1 54.3) 37.3 (30.9 45.2) 100.8 (81.6 124.4) 
1994 10.7 (8.2 13.6) 10.5 (8.5 12.9) 44.9 (36.4 56) 39.8 (32.9 47.9) 105.9 (86 130.4) 
1995 11.4 (8.9 14.5) 11 (8.9 13.6) 46.3 (37.6 58) 42.6 (35.1 51.2) 111.3 (90.5 137.3) 
1996 12.3 (9.7 15.5) 11.5 (9.3 14.3) 47.7 (38.6 59.6) 45.5 (37.3 55) 116.9 (94.9 144.5) 
1997 13.1 (10.5 16.6) 12 (9.7 15.1) 49.1 (39.5 61.8) 48.7 (39.8 59.6) 122.9 (99.5 153) 
1998 14 (11.3 17.6) 12.4 (10 15.7) 50.4 (40.4 63.8) 52.1 (42.5 64.5) 129 (104.2 161.6) 
1999 15 (12.1 18.6) 12.9 (10.2 16.3) 51.7 (41.2 65.7) 55.7 (44.9 69.6) 135.4 (108.4 170.2) 
2000 16 (12.8 19.8) 13.3 (10.5 17.1) 53 (42 68.3) 59.7 (48 74.9) 142 (113.3 180.1) 
2001 17.1 (13.7 21.3) 13.6 (10.7 17.9) 54.2 (42.6 70.5) 64 (51.4 80.9) 148.9 (118.4 190.5) 
2002 18.1 (14.4 23) 14 (10.9 18.7) 55.3 (43.3 72.6) 68.6 (54.8 86.8) 156 (123.4 201) 
2003 19.2 (15.1 24.6) 14.3 (11.1 19.3) 56.5 (43.7 75.1) 73.5 (58.1 94.4) 163.5 (128 213.3) 
2004 20.4 (15.6 26.6) 14.6 (11.3 20) 57.5 (43.9 77.3) 78.7 (61.8 101.5) 171.2 (132.5 225.4) 
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